You are here
Home ›Now showing results 1-19 of 19
This is an activity about the basic properties of magnets and magnetism. Learners explore concepts such as magnetic fields and polarity, which form the basic ingredients of a study of Earth's magnetic field and the technology of magnetometers.... (View More) Materials needed include bar magnets and paper clips. This is Activity 1 of Exploring Magnetism: A Teacher's Magnetism Activity Guide. (View Less)
This is an activity about the properties of electromagnets, which is a crucial underpinning for understanding how magnetic fields are generated in nature, in the surface of the Sun, and in the interior of Earth. Learners will create an electromagnet... (View More) by letting an electric current flow through a wire to generate a magnetic field, which is then detected using a compass. This activity requires a thin insulated wire, pencil, battery, compass and paper clips. This is Activity 2 of the Magnetism and Electromagnetism teachers guide. (View Less)
In this activity, students will demonstrate the generator effect, which is due to electromagnetic induction when a conductor (a long metal wire) moves through a magnetic field. Materials required to this activity include: a 100-foot extension cord... (View More) with ground prong, current or voltage galvanometer, two lead wires with alligator clips on at least one end, and one compass. This activity must be done in an open space large enough to swing a 100-foot cord as a jump rope, such as a gymnasium or outdoor field. This is activity three of "Exploring Magnetism." The guide includes science background information, student worksheets, glossary and related resources. (View Less)
This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets... (View More) and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide. (View Less)
This is an activity about magnetic induction. Learners will induce a flow of electricity in a wire using a moving bar magnet and measure this flow using a galvanometer, or Am meter. Through discussion, this activity can then be related to magnetic... (View More) fields in nature. This activity requires use of a galvanometer, bar or cow magnet, and wire. This is the fifth lesson in the second session of the Exploring Magnetism teacher guide. (View Less)
This is a lesson to demonstrate magnetic field lines in 2- and 3-dimensions. In the first activity, learners sprinkle iron filings over a magnet underneath a paper and record their observations. The second activity involves building a 3-D magnetic... (View More) field visualizer using a clear plastic bottle, a cow magnet and iron filings. This is the second lesson in the first session of the "Exploring Magnetism" teacher guide. (View Less)
This is an activity about electromagnetism. Learners will set up a simple circuit using a battery, wire, and knife switch, and then use a compass to map the magnetic field lines surrounding the wire. Next, they will add a coil of wire to the simple... (View More) circuit and map the magnetic fields again. This is the second lesson in the second session of the Exploring Magnetism teachers guide. (View Less)
This is an activity about electromagnetism. Learners will use a simple circuit powered by a battery source to investigate the strength of the magnetic field produced by a coil of wire in the circuit. The strength will be indicated by the deflection... (View More) of magnetic compass needles and by the distance a coil of wire was moved by the action of the circuit. This activity requires coils or spools of wire, a knife switch, three magnetic compasses, a source of electricity such as 3 D-cell batteries or an AC to DC power adapter, alligator-clipped wire, and a bar or cow magnet. This is the fourth lesson in the second session of the Exploring Magnetism teachers guide. (View Less)
This is a lesson about measuring magnetic field directions of Earth and in the environment. First, learners go outside, far away from buildings, power lines, or anything electrical or metal, and use compasses to identify magnetic North. Next, they... (View More) use the compasses to probe whether there are any sources of magnetic fields in the local environment, including around electronic equipment such as a CD player and speakers. This is the first lesson in the second session of the Exploring Magnetism teacher guide. (View Less)
This activity demonstrates Lenz's Law, which states that an induced electromotive force generates a current that induces a counter magnetic field that opposes the magnetic field generating the current. In the demonstration, an empty aluminum can... (View More) floats on water in a tray, such as a Petri dish. Students spin a magnet just inside the can without touching the can. The can begins to spin. Understanding what happens can be explained in steps: first, the twirling magnet creates an alternating magnetic field. Students can use a nearby compass to observe that the magnetic field is really changing. Second, the changing magnetic field permeates most things around it, including the aluminum can itself. A changing magnetic field will cause an electric current to flow when there is a closed loop of an electrically conducting material. Even though the aluminum can is not magnetic, it is metal and will conduct electricity. So the twirling magnet causes an electrical current to flow in the aluminum can. This is called an "induced current." Third, all electric currents create magnetic fields. So, in essence, the induced electrical current running through the can creates its very own magnetic field, making the aluminum can magnetic. This is activity four of "Exploring Magnetism." The guide includes science background information, student worksheets, glossary and related resources. (View Less)
This is an activity about magnetism. Learners will experiment using horseshoe and bar magnets along with various materials in order to identify the effects of magnets on each other and on other materials. This is the third activity as part of the... (View More) iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This lesson is an introduction to the use of a magnetic compass. At a specific location, learners will locate an object using a compass, identify its bearing, and others will attempt to locate the object by only knowing the bearing reading and the... (View More) corresponding location where the bearing was obtained. Next, learners will develop a method for determining if a magnetic storm is occurring, and they will test this method using online information and a compass. This activity requires compasses and access to the Internet. This is Activity 5 in the Exploring Magnetism on Earth teachers guide. (View Less)
This is an activity about the Kp index, a quantification of fluctuations in the Earth's magnetic field due to the relative strength of a magnetic storm. Learners will take a reading from a magnetometer site and make a Kp index estimate to predict... (View More) whether or not an aurora display will occur near that site. This resource is designed to support student analysis of THEMIS (Time History of Events and Macroscale Interactions during Substorms) Magnetometer line-plot data. This activity requires the use of a computer with Internet access. This is activity 18 in Exploring Magnetism: Earth’s Magnetic Personality. (View Less)
This is an activity about auroras and the scientific terminology used to describe them. Learners will read an article that provides an introduction to specific terms and concepts related to auroras and auroral substorms and examine photographs of a... (View More) 2003 aurora and descriptions of an 1859 aurora to identify the various phases of auroral substorms. This is activity 11 from Exploring Magnetism: Magnetic Mysteries of the Aurora. (View Less)
This is an activity about measuring the interplanetary magnetic field, or IMF. Learners will utilize cardboard boxes with a magnet inside to design a spacecraft, and experiment with ways to attach a magnetometer that will measure the IMF rather than... (View More) the magnetic field of the spacecraft. This is Activity 2 in Session 3 of the Exploring Magnetism in the Solar Wind teachers guide. (View Less)
This is an activity about Earth's magnetic field. Learners will construct a soda bottle magnetometer, collect data, and analyze the results to detect magnetic storm events. Ideally, learners should collect data for at least a month. If several... (View More) months are available for data collection, this is ideal. This is the first activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This is an activity about magnetic fields. Learners will use various magnets, magnetic film, and a compass to see and illustrate what magnetic fields look like. This is the fourth activity as part of the iMAGiNETICspace: Where Imagination,... (View More) Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This is an activity about satellite design. Learners will create a satellite model to determine which shape will provide a steady minimum current output from solar panels, given a fixed position light source. After, as a group, they will assess... (View More) whether their satellite model would work in real life and how their actions were similar to what engineers do. This is the fifth activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide curriculum. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This is an activity about area and volume. Learners will use fabrication software to determine the optimal size of a satellite which can fit within a given rocket cylinder. To complete this activity, fabrication software is required (an example is... (View More) suggested in the lesson). This is the sixth activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)