You are here
Home ›Now showing results 1-6 of 6
In this problem set, learners will use a map of satellite data on Earth's surface magnetism and determine coordinates and distances for variations in magnetism. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth... (View More) Science and Climate Change. (View Less)
This is an activity about vectors and velocity. It outlines the addition and subtraction of vectors, and introduces the application of trigonometry to describing vectors. The resource is designed to support student analysis of THEMIS (Time History... (View More) of Events and Macroscale Interactions during Substorms) Magnetometer line-plot data. Learners will complete worksheets consisting of problem sets that allow them to work with vector data in magnetic fields. This is activity 15 from Exploring Magnetism: Earth's Magnetic Personality. (View Less)
This is a resource that explains the rationale behind the multiple time zone divisions in the United States. Learners will work through a problem set to practice calculating the time in one time zone, given the time in another time zone. This is... (View More) activity 9 from the educator guide, Exploring Magnetism: Magnetic Mysteries of the Aurora. (View Less)
This book offers an introduction to the electromagnetic spectrum using examples of data from a variety of NASA missions and satellite technologies. The 84 problem sets included allow students to explore the concepts of waves, wavelength, frequency,... (View More) and speed; the Doppler Shift; light; and the energy carried by photons in various bands of the spectrum. Extensive background information is provided which describes the nature of electromagnetic radiation. (View Less)
This is a poster about radiation in space. Learners can read about the Van Allen belts and how NASA's Van Allen Probes are investigating the influence of the Sun's energy on Earth. The activity version also includes math problems, a vocabulary... (View More) matching game, a communication research challenge, and a toolbox of web resources. (View Less)
This is an activity about using models to solve a problem. Learners will use a previously constructed model of the MMS satellite to determine if the centrifugal force of the rotating MMS model is sufficient to push the satellite's antennae outward,... (View More) simulating the deployment of the satellites after launch. Then, learners will determine the minimum rotational speed needed for the satellite to successfully deploy the antennae. This is the seventh activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)