## You are here

Home ›Now showing results **1-6** of **6**

This is an activity about observing and mapping sunspots by direct solar observation. Learners will use a small telescope, binoculars, or a Sunspotter to create a projected image of the Sun and trace the position of any observed sunspots on a piece... (View More) of paper. Additionally, learners will mark the direction of the Sun image’s motion. This is Activity 2 of the Space Weather Forecast curriculum. (View Less)

This is an activity about solar rotation and sunspot motion. Learners will use a sphere or ball to model the Sun and compare the observed lateral motion of sunspots to their line-of-sight motion. This is Activity 1 of the Space Weather Forecast... (View More) curriculum. (View Less)

This is an activity about the period of the Sun's rotation. Learners will use image of the Sun from the SOHO spacecraft and a transparent latitude/ longitude grid called a Stonyhurst Disk to track the motion of sunspots in terms of degrees of... (View More) longitude. Using this angular motion measurement, learners will then calculate the sunspot’s angular velocity in order to determine the rotation period of the Sun. This activity requires access to the internet to obtain images from the SOHO image archive. This is Activity 4 of the Space Weather Forecast curriculum. (View Less)

This is an activity about how the Sun can affect the Earth's atmosphere, specifically the ionosphere. Learners will use real data from a Sudden Ionosphere Disturbance Monitor, or SID Monitor, to identify the signatures in the graphed data that can... (View More) be used to determine the times of sunrise and sunset. Although the SID monitors are designed to detect SIDs caused by solar flares, they also detect the normal influence of solar X-rays and UV light during the day as well as cosmic rays at nighttime. There is a distinct shape to a 24-hour SID data graph, with unique shapes, or signatures, of the graph appearing at sunrise and sunset.This activity is part of the Research with Space Weather Monitor Data educators guide. Use of and access to a Stanford Solar Center SID monitor and the internet is encouraged but not required. Locations without a SID monitor can use sample data provided in the educators guide. (View Less)

This is an activity about the mathematics of oscillation. Using data obtained in ninth and tenth activities in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide, learners will plot the formula... (View More) X(t)=X(0)cos(ft) or X(t)=X(0)sin(ft), depending on the data obtained during the oscillation experiments. Then, the mathematical model for oscillation is further refined by including damping. This is the eleventh activity in the guide and requires prior use and construction of a soda bottle magnetometer. (View Less)

This is a mathematical lesson utilizing algebra to investigate Earth's magnetosphere. Learners will solve algebraic distance equations that will show how the distance to the Earth's magnetopause depends on the incoming solar wind pressure. This is... (View More) the twentieth and final activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)