You are here
Home ›Now showing results 1-3 of 3
This is an activity about electromagnetism. Learners will set up a simple circuit using a battery, wire, and knife switch, and then use a compass to map the magnetic field lines surrounding the wire. Next, they will add a coil of wire to the simple... (View More) circuit and map the magnetic fields again. This is the second lesson in the second session of the Exploring Magnetism teachers guide. (View Less)
This is an activity about electromagnetism and the Sun. First, learners will do a KWL activity using six vocabulary words. Next, they will build an electromagnet and investigate how it works. Finally, learners will relate the workings of their... (View More) electromagnet to a Solar Dynamics Observatory magnetogram image of the Sun. Per group of learners, this activity requires materials such as a length of insulated wire, alligator clips, a 2-D-battery holder, two D-batteries, and a nail. (View Less)
How effective would solar cells be in any particular area of the United States? In this activity, students answer that question by analyzing graphs of incoming solar radiation. Students will download two solar radiation graphs, one based on latitude... (View More) and one based on cloud cover. After transferring that data to the accompanying worksheet, students will determine the areas in the United States best suited for the use of solar cells. Using both an overlay graph and a difference graph, students will determine the practicality of solar cell power for a home in various U.S. locations. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, an online glossary, and a list of related AP Environmental Science topics. (View Less)