You are here
Home ›Narrow Search
Now showing results 1-10 of 13
This is an activity about satellite design. Learners will create a satellite model to determine which shape will provide a steady minimum current output from solar panels, given a fixed position light source. After, as a group, they will assess... (View More) whether their satellite model would work in real life and how their actions were similar to what engineers do. This is the fifth activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide curriculum. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This activity is a short engineering design challenge to be completed by individual students or small teams. A real-world problem is presented, designing buildings for hurricane-prone areas, but in a simulated way that works in a classroom, after... (View More) school club, or informal education setting. Students are given simple materials and design requirements, and must plan and build a tower as tall as possible that will hold up a tennis ball while resisting the force of wind from a fan. After the towers are built, the group comes together to test them. If there is time after testing, which can be observational or framed as a contest between teams, students can redesign their towers to improve their performance, or simply discuss what worked well and what didn’t in their designs. (View Less)
Materials Cost: $1 - $5 per group of students
This is a lesson about the solar wind, Earth's magnetosphere, and the Moon. Participants will work in groups of two or three to build a model of the Sun-Earth-Moon system. They will use the model to demonstrate that the Earth is protected from... (View More) particles streaming out of the Sun, called the solar wind, by a magnetic shield called the magnetosphere, and that the Moon is periodically protected from these particles as it moves in its orbit around the Earth. Participants will also learn that the NASA ARTEMIS mission is a pair of satellites orbiting the Moon that measure the intensity of solar particles streaming from the Sun. (View Less)
In this activity, teams of learners will model how scientists and engineers design and build spacecraft to collect, store, and transmit data to Earth. Teams will design a system to store and transmit topographic data of the Moon and then analyze... (View More) that data and compare it to data collected by the Lunar Reconnaissance Orbiter. (View Less)
This is a lesson about the robotic arm on the International Space Station. Learners will build a robotic arm to grapple (grab onto) a spacecraft and then use it to grapple different classroom objects. This is technology activity 2 of 2 found in the... (View More) ISS L.A.B.S. Educator Resource Guide. (View Less)
Learners will investigate the relationship between mass, speed, velocity, and kinetic energy in order to select the best material to be used on a space suit. They will apply an engineering design test procedure to determine impact strength of... (View More) various materials. This is engineering activity 2 of 2 found in the ISS L.A.B.S. Educator Resource Guide. (View Less)
This is an online sorting game that compares the lifetime risk of death from an asteroid impact to other threats. For example, are you more likely to be killed by an amusement park ride or an asteroid impact? It is part of the Killer Asteroids Web... (View More) Site. The site also features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), a discussion of how at risk Earth really is to an asteroid or comet impact, and background information on light curves. (View Less)
This is a multi-level, physics-based game that asks players to save Earth by using their spaceship to deflect an incoming asteroid. It is designed to accurately reflect the physics of space and could be used to help confront preconceptions about... (View More) motion and forces in space. It is part of the Killer Asteroids Web Site. The site also features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), a discussion of how at risk Earth really is to an asteroid or comet impact, and background information on light curves. (View Less)
This is a game about light curves that will test your ability to figure out things about an asteroid from just a graph of its brightness. Astronomers use telescopes to collect light curves - measurements of the brightness of distant asteroids over... (View More) time. It is part of the Killer Asteroids Web Site. The site also features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), a discussion of how at risk Earth really is to an asteroid or comet impact, and background information on light curves. (View Less)
This is a game which focuses on the challenge of moving a "rubble pile" asteroid. Players have the option of using bombs, impactors, or "pusher" ships. It is a simpler version of Rubble! and part of the Killer Asteroids Web Site. The site also... (View More) features a background overview of the differences between asteroids and comets, information on different types of asteroids (rubble piles vs monoliths), and a discussion of how at risk Earth really is to an asteroid or comet impact. (View Less)