You are here
Home ›Now showing results 1-10 of 24
Students will test various materials to determine if any can shield their "magnetometer" (compass) from an external magnetic field using their own experimental design. If no suitable material is available, they will devise another method to protect... (View More) their instrument. Includes background science for the teacher, worksheets, adaptations and extensions. Next Generation Science Standards (NGSS) are also identified. (View Less)
This is the third module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Each activity is self-directed by students or student teams and utilizes online videos, data from the SDO satellite and hands-on activities to explore,... (View More) research and build knowledge about how the Sun's varying activity impacts Earth and space weather. Each activity provides opportunities to build knowledge and vocabulary, apply or demonstrate learning through real world connections and create resources to use in investigations. Both a teacher and student guide are included with sequential instructions and embedded links to the needed videos, tutorials and internet resources. In Activity 3A: Sun-Earth Interactions, students gather information from online videos and create a 3D model to demonstrate the relationship to Earth's place in space and the affect of Earth's axial tilt on our seasons, then film a short video explaining the reasons for the seasons. Activity 3B: Space Weather, students use online videos to gather information on what space weather is, and its causes and effects, to create a concept map. They then use real-time SDO data to forecast space weather. Activity 3C: Solar Research in Action! Make a Magnetometer has students view information in online videos about to Earth's magnetosphere and the impacts of space weather, then create a magnetometer to detect and visualize changes in the Earth's magnetic fields to monitor solar storm impacts. A computer for student-teams and access to the internet are needed for this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This is a lesson about measurement and cratering. Learners will read about the origin of the foot as a standardized unit of measure, work collaboratively to conduct an experiment about cratering, and collect and record data to draw logical and... (View More) scientific conclusions. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 7 of the Mars Rover Celebration Unit, a six-week curriculum. (View Less)
This is a lesson about measurement and cratering. Learners will read about the origin of the foot as a standardized unit of measure, work collaboratively to conduct an experiment about cratering, and collect and record data to draw logical and... (View More) scientific conclusions. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 7 of the Mars Rover Celebration Unit, a six-week curriculum. (View Less)
This is an activity about seasons. Learners compare the seasons though identifying seasonal activities and drawing scenes in each season. Then, they compare the temperature on thermometers left under a lamp for different lengths of time to explore... (View More) how Earth heats more when the Sun is in the sky for longer periods of time. Finally, learners use a flashlight and a globe to investigate how the spherical shape of Earth causes the seasons to be opposite in each hemisphere. This hands-on activity is an additional lesson as part of the book, Adventures in the Attic. (View Less)
This is a book about seasons. Learners will read or listen to a story about two twins, Matt and Matilda, who are tasked with creating a model of the Earth-Sun system for a science fair project. Through some wild seasonal changes they experience... (View More) while creating the model, the two come to a better understanding of the causes of Earth's seasons. An extension activity is included (Reasons for the Seasons), as well as reading and vocabulary activities. (View Less)
This is a lesson about the electromagnetic spectrum. Learners begin by arranging a set of picture cards; in the discussion afterwards, this activity is related to the electromagnetic spectrum as an arrangement of energy waves. Next, using a... (View More) clothesline to model a logarithmic scale, they add in the electromagnetic spectrum. Finally, learners conduct several simple tests to detect other types of radiation. This activity requires access to a sunny outdoor location and the use of ultraviolet light-sensitive beads. (View Less)
In this activity about the Sun's influence on plant growth, learners will create a plant box and observe that a plant will grow towards the Sun, its primary source of energy. By periodically collecting data on the growth of the plant, they can come... (View More) to their own conclusions about why the plant grew towards the sunlight. One to two weeks are needed to grow plants for this lesson; also, time is needed to construct the plant box. Potting soil and bean seeds are needed for this activity. (View Less)
This is an activity about the Doppler effect. Learners begin by simulating the noise made by a passing siren. After learning that the change in pitch results from movement, they investigate the definition of frequency, calculate change in frequency,... (View More) and learn how this applies to light and the study of astronomy. This lesson requires a Doppler ball, also referred to as a buzzer ball. (View Less)
This is an activity about seasons. Learners begin by brainstorming a list of activities and events that occur in each season. Next, learners perform an experiment by comparing the temperature on thermometers left under a lamp for different lengths... (View More) of time to illustrate that Earth heats more when the Sun is in the sky longer. (View Less)