You are here
Home ›Narrow Search
Now showing results 1-6 of 6
This is the first module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Activities are self-directed by students or student teams using online videos and data from the SDO satellite to explore, research and build knowledge about... (View More) features of the Sun. Students build vocabulary, apply or demonstrate learning through real world connections, and creating resources to use in their investigations. Each activity comes with both a teacher and student guide with sequential instructions and embedded links to the needed videos and internet resources. Activity 1A: Structure of the Earth's Star takes students through the features and function of the Sun's structures using online videos, completing a "Sun Primer" data sheet using information from the videos, and creating a 3D origami model of the Sun. Students use a KWL chart to track what they have learned. Activity 1B: Observing the Sun has students capture real solar images from SDO data to find and record sunspots and track their movement across the surface of the Sun. Activity 1C has students create a pin-hole camera to use in calculating the actual diameter of the Sun, and then calculate scales to create a Earth-Sun scale model. Students reflect on their learning and results at the end of the module. An internet connection and access to computers are needed to complete this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This is an activity about scale. Participants will arrange imagery of Earth and many other space objects in order of their size from smallest to largest, their distance from Earth's surface, their temperature from coolest to hottest, and/or their... (View More) age from youngest to oldest. By manipulating these images and discussing their ideas, children and adults represent and confront their own mental models of space and time. (View Less)
This is a lesson about how to answer a scientific or engineering question. Learners will refine the scientific question they generated in Lesson 5 so that it can be answered by data and/or modeling, brainstorm possible solutions for the scientific... (View More) question chosen, determine reasonableness of solutions, use concept maps to enhance meaningful learning. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, two Vocabulary Cards, and a concept map supplement. This is lesson 6 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
This is an activity about sunlight as an energy source. Learners will create a plant box and observe that a plant will grow toward the Sun, its primary source of energy. This hands-on activity is an additional lesson as part of the book, The Day... (View More) Joshua Jumped Too Much. (View Less)
Learners will design and conduct experiments to answer the question, "how does distance and inclination affect the amount of heat received from a heat source?" They will measure heat change as a function of distance or viewing angle. From that... (View More) experiment, they will identify how the MESSENGER mission to Mercury takes advantage of these passive cooling methods to keep the spacecraft comfortable in a high-temperature environment. This is lesson 3 from MESSENGER Education Module: Staying Cool. Note: the student guide starts on p. 24 of the PDF. (View Less)
Learners will consider the essential question, "How much energy does sunlight provide to the Earth and what is its role in the Earth’s energy resources?" Activities include building a device to measure the solar constant - the amount of energy in... (View More) sunlight - calculating the amount of energy arriving at the Earth from the Sun, and describing the differences in solar radiation at Mercury compared to Earth. This is activity 1 of 4 in the module, Staying Cool. Note: the student guide starts on p. 21 of the PDF. (View Less)