You are here
Home ›Narrow Search
Now showing results 1-16 of 16
This 12-page educational comic book introduces readers to the Global Precipitation Measurement (GPM) mission. Using the Japanese anime art style, the comic book explains the satellite technology and the mission goals and applications. Supplemental... (View More) materials to support the story include an overview of the GPM mission, a description of the satellite and its instruments, examples of the data it collects, descriptions of some of the constellation partners, and a glossary of science terms used in the comic. Links are provided to additional related resources, including a template for learners to create their own comic. The Japanese anime/manga style of art was chosen because the GPM mission is a collaboration between NASA and JAXA, the Japan Aerospace Exploration Agency. (View Less)
This site features information about constructing a LEGO model of the Global Precipitation Measurement (GPM) Mission Core Observatory. Two options for building the GPM model are provided: students can construct a 3D model on the LEGO website or... (View More) build an actual LEGO model of the satellite (information is provided for purchasing individual parts or for purchasing a pre-packaged kit). In addition to learning about the primary components of the GPM satellite, students will also learn facts about the mission, its technology and instrumentation. (View Less)
The Global Precipitation Mission (GPM) collects rain, snow and other precipitation data worldwide every three hours. This short (4:17 minute) video introduces learners to the role of GPM and it's partner satellites in gathering precipitation data... (View More) and the role of Goddard's Precipitation Processing System (PPS) in compiling that data into unified global data sets. (View Less)
In a one minute time lapse video, viewers are shown the assembly sequence of the Global Precipitation Measurement satellite from its 2011 beginning at Goddard Space Flight Center in Maryland to its 2014 launch at Tanegashima Space Center in Japan.
This short (11:29 minutes) video features NASA scientists answering a set of student-designed questions related to NASA’s Global Precipitation Measurement satellite mission. The set of twelve questions were generated after students viewed... (View More) animations of GPM data; the questions centered on satellite operations, satellite data, and precipitation patterns and impacts. (View Less)
The Global Precipitation Measurement mission provides a global perspective on rain and snow, along with the storms, impacts, patterns, hazards, and changes associated with those precipitation events. Several such events, which occurred during a... (View More) one-week period in August 2014, have been compiled into this short video (5:42 minutes) which features narration by NASA scientists. (View Less)
This activity includes a presentation with links to videos about scientists and engineers working with NASA's Global Precipitation Measurement Mission (from the Faces of GPM series), as well as other STEM careers videos, followed by a number of... (View More) links to online career resources. It is designed to be used by students working at their own pace, choosing which videos and links they are interested in watching and exploring, but could also be used with a larger group. As part of the activity, students identify personal skills and abilities related to career interests and develop a career goal. Includes a student capture sheet with guiding questions. (View Less)
Intended for use after viewing the Science on a Sphere film "Water Falls," this lesson deepens student's understanding of global precipitation measurement. Students will explore NASA satellite data gathered during Hurricane Sandy to learn how that... (View More) data was essential in helping scientists forecast its path and precipitation amounts. All background information, student worksheets and images/photographs/data are included in these downloadable sections: Teacher’s Guide, Student Capture Sheet, Assessment and PowerPoint Presentation. (View Less)
This resource is designed to enable presenters (scientists, engineers, etc.) to easily present to an elementary and/or middle school audience and feel confident that the information they are presenting is developmentally appropriate and supports the... (View More) Next Generation Science Standards. A PowerPoint Presentation includes talking points and suggestions, a “Best Practices” document to offer helpful suggestion before, during, and after the presentation, and a list of additional resources that may be accessed by the speaker and/or the educator. This presentation is designed to take 30 to 45 minutes. (View Less)
In this lesson, students will think about their experiences with hurricanes and severe storms, and then learn the basics of what causes hurricanes to form. Students will learn how hurricane prediction has progressed, and how satellite technology is... (View More) used to see inside storms to get improved data for enhancing computer-based mathematical models. To share what they’ve learned, students will create a news report (script or comic strip) to tell others about hurricanes and hurricane prediction. This lesson uses the 5E instructional model. TRMM is Tropical Rainfall Measuring Mission. (View Less)
This activity is a short engineering design challenge to be completed by individual students or small teams. A real-world problem is presented, designing buildings for hurricane-prone areas, but in a simulated way that works in a classroom, after... (View More) school club, or informal education setting. Students are given simple materials and design requirements, and must plan and build a tower as tall as possible that will hold up a tennis ball while resisting the force of wind from a fan. After the towers are built, the group comes together to test them. If there is time after testing, which can be observational or framed as a contest between teams, students can redesign their towers to improve their performance, or simply discuss what worked well and what didn’t in their designs. (View Less)
Materials Cost: $1 - $5 per group of students
This activity allows participants to build a paper model of the GPM Core Observatory and learn about the technology the satellite uses to measure precipitation from space. Directions explain how to cut, fold and glue the individual pieces together... (View More) to make the model. The accompanying information sheet has details about the systems in the satellite including the Dual-frequency Precipitation Radar (DPR), the GPM Microwave Imager (GMI), the High Gain Antenna, avionics and star trackers, propulsion system and solar array, as well as a math connection and additional engineering challenges. (View Less)
Materials Cost: 1 cent - $1 per group of students
In this activity, students face an engineering challenge based on real-world applications. They are tasked with developing a tool they can use to measure the amount of rain that falls each day. Students will find out why freshwater is important,... (View More) learn about the water cycle, and the need to have a standard form of calibration for measurement tools. They will learn that keeping track of precipitation is important, and learn a little bit about how NASA's GPM satellite measures precipitation from space. This lesson uses the 5-E instructional model. (View Less)
Students will design, build and then test a rain gauge to measure precipitation. By sharing their results, they will recognize the need for standardization and precision in scientific tools. All background information, student worksheets and... (View More) images/photographs/data are included in these downloadable sections: Teacher’s Guide, Student Capture Sheet and PowerPoint Presentation. This activity uses the 5E instructional model and is part of the Survivor Earth series of one-hour lessons. (View Less)
Materials Cost: 1 cent - $1 per group of students
This short video includes interviews with several key engineers who built and tested the Global Precipitation Measurement (GPM) Core Observatory at NASA Goddard Space Flight Center. Interviewees include: Beth Weinstein, GPM integration and test... (View More) engineer; Lisa Bartusek, GPM deputy mission systems engineer; and Carlton Peters, associate branch head at NASA Goddard Space Flight Center and GPM thermal branch development lead. (View Less)
This short video (4:44) helps audiences understand and appreciate the importance of measuring precipitation globally. The role of the Global Precipitation Measurement (GPM) mission to better understand, model and predict where and when too much... (View More) rainfall will occur (resulting in floods and landslides) and where too little rain will fall (resulting in droughts) is examined. (View Less)