You are here
Home ›Now showing results 1-10 of 14
This is an activity about Earth's magnetic field. Learners will construct a soda bottle magnetometer, collect data, and analyze the results to detect magnetic storm events. Ideally, learners should collect data for at least a month. If several... (View More) months are available for data collection, this is ideal. This is the first activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This is an activity about satellite design. Learners will create a satellite model to determine which shape will provide a steady minimum current output from solar panels, given a fixed position light source. After, as a group, they will assess... (View More) whether their satellite model would work in real life and how their actions were similar to what engineers do. This is the fifth activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide curriculum. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This is a lesson about measurement and cratering. Learners will read about the origin of the foot as a standardized unit of measure, work collaboratively to conduct an experiment about cratering, and collect and record data to draw logical and... (View More) scientific conclusions. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 7 of the Mars Rover Celebration Unit, a six-week curriculum. (View Less)
Students are introduced to planetary rocks, soils, and surfaces using images of the lunar samples collected by Apollo astronauts. Examining those images and participating in related activities will lead students to a deeper understanding of the... (View More) Moon, Earth and our Solar System. The 27-page student guide contains background information, images, instructions, questions and activities. The lesson models scientific inquiry using the 5E instructional model and also includes a teacher’s guide, an alignment to Next Generation Science Standards (NGSS), and connections to Common Core English Language standards. (View Less)
Materials Cost: $1 - $5 per group of students
Learners will investigate how to build a space suit that keeps astronauts cool. This is technology activity 1 of 2 found in the ISS L.A.B.S. Educator Resource Guide.
This is a hands-on lab activity about the properties and states of water. Learners will complete activities using different liquids to understand the three states of matter, explain how the high heat capacity and abundance of liquid water makes life... (View More) on Earth possible, and understand that water containing salts and minerals has different properties than fresh water. They will graph data to analyze and articulate results and conclusions. The lab is set up as three stations that small groups of students rotate through; it can also be done as demonstrations (e.g., for younger students). Background information, common preconceptions, a glossary and more is included. This activity is part of the Aquarius Hands-on Laboratory Activities. (View Less)
The purpose of this investigation is to understand the change that takes place when water condenses from a gas to a liquid, and how a change in pressure affects this transformation. Materials needed for the experiment include a large (2L) soda... (View More) bottle, a squeeze bottle with a plastic hose, parking pens, construction paper, wooden matches, and tap water. The resource includes background information, a pre-activity exploration for students, teaching tips and questions to guide student discussion. This is the chapter 12 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations. (View Less)
Materials Cost: 1 cent - $1 per group of students
This experimental activity is designed to develop an understanding that air has mass. Students conduct an investigation and observe the change in the position of a bar balancing a balloon inflated with air on one end and a uninflated balloon on the... (View More) other end. Resources needed include a piece of wood, two rubber balloons, two large paper clips, ruler, nail, hammer and tape. The resource includes background information, teaching tips and questions to guide student discussion. This is chapter 7 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations. (View Less)
Materials Cost: $1 - $5 per group of students
This experimental activity is designed to develop a basic understanding of the interrelationship between temperature and pressure and the structure of a device made to examine this relationship. Resources needed to conduct this activity include two... (View More) canning jars, two large rubber balloons, a heat lamp or lamp with 150 watt bulb, and access to freezer or water and ice. The resource includes background information, teaching tips and questions to guide student discussion. This is chapter 5 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations. (View Less)
Materials Cost: $1 - $5 per group of students
This is an activity about magnetic induction. Learners will induce a flow of electricity in a wire using a moving bar magnet and measure this flow using a galvanometer, or Am meter. Through discussion, this activity can then be related to magnetic... (View More) fields in nature. This activity requires use of a galvanometer, bar or cow magnet, and wire. This is the fifth lesson in the second session of the Exploring Magnetism teacher guide. (View Less)