You are here
Home ›Narrow Search
Now showing results 1-10 of 23
This is an online game associated with activities during Solar Week, a twice-yearly event in March and October during which classrooms are able to interact with scientists studying the Sun. Outside of Solar Week, information, activities, and... (View More) resources are archived and available online at any time. Learners view images of celebrities in various stages of pixellation to try to guess who the celebrity is by viewing images that are highly pixellated down to images that are more defined. This relates to astronomical image resolution and how the number of pixels defines the resolution of an image. This activity is scheduled to occur during Tuesday of Solar Week. (View Less)
In this engineering challenge, student teams are introduced to the engineering design process, and then construct and test an earthquake-resistant structure. The lesson plan includes teacher support, student worksheets, multimedia assets, and links... (View More) for students to conduct Web-based investigations. Authentic assessments, a multiple choice test, and rubrics are included. This is an optional extension activity associated with the resource, Flight Mission Challenge: Improving Earthquake Monitoring, a 3 part, multiple-day Earth science and engineering investigation. (View Less)
Materials Cost: 1 cent - $1 per group of students
This is an activity about the Doppler effect. Learners begin by simulating the noise made by a passing siren. After learning that the change in pitch results from movement, they investigate the definition of frequency, calculate change in frequency,... (View More) and learn how this applies to light and the study of astronomy. This lesson requires a Doppler ball, also referred to as a buzzer ball. (View Less)
This is an activity about the concept of direct versus indirect sunlight. Learners construct and use a sun angle analyzer to investigate the effect of angle on area illuminated. The fraction of light on each square of the analyzer is then calculated... (View More) and compared. A discussion at the end relates the results to the amount of sunlight falling on different parts of the Earth and the effect this has on temperature and seasons. Reprinted with permission from the Great Explorations in Math and Science (GEMS). (View Less)
This is a set of materials about spectroscopy, including a downloadable PowerPoint presentation and two demonstrations or activities. Learners will read and/or hear about the science of spectroscopy, what a spectrum is, and how spectroscopy is... (View More) important to the study of our Sun. These resources can also accompany the Stanford Solar Center's Build Your Own Spectroscope activity. (View Less)
In this lesson, students are introduced to the electromagnetic spectrum. They observe a demonstration of the visible light spectrum created by a flashlight and a prism, complete an activity sheet where they identify the wavelength that is involved... (View More) in technologies used in their communities, and learn about satellite sensors that remotely sense data. Student worksheets, a data sheet, answer keys, and Web links are included. This is Lesson 3 in Understanding Light, part of IMAGERS, Interactive Media Adventures for Grade School Education using Remote Sensing. The website provides hands-on activities in the classroom supporting the science content in two interactive media books, The Adventures of Echo the Bat and Amelia the Pigeon. (View Less)
This is a hands-on lab activity about seawater density, specifically the relationship between density of fluid, weight of an object, and buoyancy. Learners will develop hypotheses and observe a demonstration of density to understand its role in... (View More) buoyancy. They will also examine the effect of salinity on density. Background information, common preconceptions, a glossary and more is included. This activity is part of the Aquarius Hands-on Laboratory Activities. (View Less)
This experimental activity is designed to develop a basic understanding of the interrelationship between temperature and pressure and the structure of a device made to examine this relationship. Resources needed to conduct this activity include two... (View More) canning jars, two large rubber balloons, a heat lamp or lamp with 150 watt bulb, and access to freezer or water and ice. The resource includes background information, teaching tips and questions to guide student discussion. This is chapter 5 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations. (View Less)
Materials Cost: $1 - $5 per group of students
This experimental activity is designed to develop a basic understanding of the relationship between temperature and pressure and that a barometer can be constructed to detect this relationship. Resources needed to build a simple barometer include a... (View More) canning jar with metal lid ring, large balloon, a block of wood, ruler, a nail, wood glue, hammer and a screwdriver. The resource includes background information, teaching tips and questions to guide student discussion. This is chapter 6 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations. (View Less)
Materials Cost: $1 - $5 per group of students
In this activity, students will learn how technology can help scientists solve a problem. One of the challenges scientists face with any spacecraft is attitude control. Students will be introduced to the problem of attitude control in space through... (View More) an experiment using angular momentum, and experience two different ways scientists address this problem. Students begin by discussing the technology(ies) that powers satellites and enable(s) them to move through space. Students then engage in an angular momentum experiment. Estimated cost of this activity does not include the cost of the bicycle wheel for the angular momentum experiment. This activity is one of several in the Swift: Eyes through Time collection available on the Teachers' Domain website. (View Less)