You are here
Home ›Narrow Search
Now showing results 1-10 of 40
This lesson plan uses the 5E learning cycle and is designed around an essential question: How do I know when I’ve found important information in my reading? Learning objectives include: identify important details in informational texts; learn and... (View More) or review summarizing skills, work collaboratively to locate important information about Mars such as terrain, climate, and atmosphere; understand the rationale and importance of note-taking; develop effective note-taking strategies; and apply note-taking skills to record key information in students' science notebooks. The lesson plan has a number of appendices, including standards alignment. This is Lesson 4 of the elementary school version of the 6-week Mars Rover Celebration curriculum. (View Less)
This activity was developed to get students thinking about the many ways that people use freshwater and how we can conserve this precious and fundamental natural resource. Students will watch a short documentary describing issues related to clean... (View More) water availability, analyze water-use data and start to think about how they consume and can conserve water. This background knowledge will lead to students collecting data about their own water use and finding areas in their lives to conserve water. This activity uses the 5E instructional model and is part of the "Survivor Earth" series of one-hour lessons. (View Less)
In this lesson, learners will research facts about Atlas V rockets, which launched the MMS satellites. After, they will compute the speed of the launch rocket, given a data chart of time vs. distance from lift-off. Then, they will write a report... (View More) synthesizing their researched information. This lesson requires student access to internet accessible computers. This is lesson two of the MMS Mission Educator's Instructional Guide, which uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
This is a problem-based learning activity in which students assume the roles of musicians planning a world tour. Students analyze precipitation data from tour cities to predict the best time of year to perform in these areas. Step-by-step... (View More) instructions for use of the MY NASA DATA Live Access Server (LAS) guide students through selecting a data set, importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
This is an activity about the relation between day length and temperature. In one team, learners will create and analyze a graph of hours of sunlight versus month of the year for a number of latitudes. In another team, learners will graph... (View More) temperature versus month for the same latitudes. The teams then compare data and draw conclusions from their analyses. (View Less)
This is a problem-based learning activity where students utilize NASA data to identify forested areas at high risk for wildfire. Students assume the role of rangers of the Department of Forestry and draw conclusions from the data in order to attempt... (View More) to prevent forest fires. Step-by-step instructions for use of the MY NASA DATA Live Access Server (LAS) guide students through selecting a data set, importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
Learners will use data from the Student Dust Counter (SDC) Data Viewer to establish any trends in the distribution of dust in the solar system. Students record the number of dust particles, or hits, recorded by the instrument and the average mass of... (View More) the particles in a given region. Note: Updated links to the Student Dust Counter Data Viewer and website are provided under Related & Supplemental Resources (right). (View Less)
The activity introduces students to aspects of the atmosphere, biosphere, hydrosphere, and litho/geosphere and how they are interrelated. It is designed to promote an interest in authentic investigations of Earth using images acquired by astronauts... (View More) as the hook. Separate student and teacher guides are available. (View Less)
This lesson includes four activities. Activity 1 introduces concepts related to distance, including length and height and units of measurement. Students are asked to make comparisons of distances. In activity 2, students work with a graph and plot... (View More) the heights of objects and the layers of the atmosphere: troposphere, stratosphere, mesosphere, thermosphere, and exosphere. In activity 3, students learn about other forms of visual displays using satellite imagery. They compare images of a hurricane using two different satellite images. One image is looking down on the hurricane from space, the other looks through the hurricane to display a profile of the hurricane. Activity 4 reinforces the concept of the vertical nature of the atmosphere. Students will take a CALIPSO satellite image that shows a profile of the atmosphere and use this information to plot mountains and clouds on their own graph of the atmosphere. The recommended order for the activities is to complete the first two activities on day one, and the second two activities on day two. Each day will require approximately 1 to 1.5 hours. (View Less)
This activity is designed to introduce students to planetary geologic features and processes. First, students will use NASA satellite images to identify geologic surface features on the "Blue Marble" (Earth), and will explore the connection between... (View More) those features and the geologic processes that created them. Using that information, students will then compare and discuss similar features on images from other planets. Included are the following materials: teacher's guide (with reference and resource information), student's guide (with activity sheets), and multiple cards of planetary images. Note that the range of targeted grade levels is quite broad; however, explicit adaptations for younger students are highlighted throughout the teacher's guide. (View Less)
Materials Cost: $1 - $5 per group of students