You are here
Home ›Narrow Search
Now showing results 1-10 of 86
Students will test various materials to determine if any can shield their "magnetometer" (compass) from an external magnetic field using their own experimental design. If no suitable material is available, they will devise another method to protect... (View More) their instrument. Includes background science for the teacher, worksheets, adaptations and extensions. Next Generation Science Standards (NGSS) are also identified. (View Less)
The effects of gravity on near-surface objects and those in Earth orbit are explored in this activity. A brief explanation, links to three related videos, a teacher's guide and short assessment are included.
Using common items - a glass soft drink bottle, a straw, clay and food coloring - students assemble and calibrate a thermometer and then use it to measure outdoor temperatures. Students record and graph the temperature data and, additionally,... (View More) complete scale conversion problems, a written assignment and an oral presentation. The Students' Cloud Observations On-Line (S'COOL) project engages students in making and reporting ground truth observations of clouds then comparing those observations with data from the CERES satellite instrument. (View Less)
The total amount of water on Earth, the places in which it is found and the percentages of fresh vs. salt are examined in this lesson. A short demonstration allows students to visualize the percentage differences and a coloring exercise illustrates... (View More) locations. This lesson uses the 5E instructional model. All background information, student worksheets and images/photographs/data are included in these downloadable sections: Teacher's Guide, Student Capture Sheet and PowerPoint Presentation. (View Less)
Materials Cost: 1 cent - $1 per group of students
In this activity, participants learn about the atmosphere by making observations and taking measurements. They will go outside and use scientific equipment to collect atmospheric moisture data (temperature, relative humidity, precipitation and cloud... (View More) cover). Students will use this qualitative and quantitative data to understand how water is found in the atmosphere, how the atmosphere determines weather and climate, and how Earth’s spheres are connected through the water cycle. The data collection is based on protocols from the GLOBE program. This activity uses the 5E instructional model and is part of the "Survivor Earth" series of one-hour lessons. (View Less)
Materials Cost: $1 - $5 per group of students
In this activity, participants learn about the geosphere by making observations and taking measurements. They will go outside and use scientific equipment to investigate water in the soil by measuring soil moisture, temperature, color and... (View More) consistency. Students will use this qualitative and quantitative data to understand how water is found in many places in the natural environment and how these places are connected in the water cycle. The data collection is based on protocols from the GLOBE program. This activity uses the 5E instructional model and is part of the "Survivor Earth" series of one-hour lessons. (View Less)
Materials Cost: $1 - $5 per group of students
This activity allows participants to build a paper model of the GPM Core Observatory and learn about the technology the satellite uses to measure precipitation from space. Directions explain how to cut, fold and glue the individual pieces together... (View More) to make the model. The accompanying information sheet has details about the systems in the satellite including the Dual-frequency Precipitation Radar (DPR), the GPM Microwave Imager (GMI), the High Gain Antenna, avionics and star trackers, propulsion system and solar array, as well as a math connection and additional engineering challenges. (View Less)
Materials Cost: 1 cent - $1 per group of students
After making observations of their natural surroundings, students uncover the intricate relationships between the atmosphere, biosphere, geosphere and hydrosphere. This introductory lesson uses the 5E instructional model. All background information,... (View More) student worksheets and images/photographs are included in these downloadable sections: Teacher's Guide, Student Capture Sheet and PowerPoint Presentation. (View Less)
In this activity, students face an engineering challenge based on real-world applications. They are tasked with developing a tool they can use to measure the amount of rain that falls each day. Students will find out why freshwater is important,... (View More) learn about the water cycle, and the need to have a standard form of calibration for measurement tools. They will learn that keeping track of precipitation is important, and learn a little bit about how NASA's GPM satellite measures precipitation from space. This lesson uses the 5-E instructional model. (View Less)
This lesson was developed to give participants an understanding of Earth's water cycle. In this one-hour long activity, students participate in a webquest to learn about the water cycle, and then build a mini-model of the water cycle to observe how... (View More) water moves through Earth's four systems. The activity uses the 5E instructional model and is part of the "Survivor Earth" series of one-hour lessons. (View Less)
Materials Cost: 1 cent - $1 per group of students