## You are here

Home ›Now showing results **1-7** of **7**

Students begin this activity by building a model of Earth’s magnetic field using a bar magnet to show Earth’s Ring current (the magnetic field which is in opposition to Earth’s magnetic field). Using this model, students will then observe the... (View More) response of a magnetic field to a fluctuating electrical current. The lesson includes teacher background information, worksheets, an answer key, extensions and resources. (View Less)

In this lesson students investigate the effects of black carbon on arctic warming and are introduced to a mechanism of arctic warming that is not directly dependent on greenhouse gases in the atmosphere: black carbon deposition on Arctic snow and... (View More) ice. It can also be used to introduce the concept of albedo. Prerequisite knowledge: students understand the concepts of absorption and reflection of light energy. This lesson is designed to be used with either an Earth/environmental science or chemistry curriculum. It may also be used as an enrichment activity in physics or physical science during a unit on energy. Includes suggested modifications for students with special needs and low technology option. Requires advance preparation, including freezing ice samples overnight. (View Less)

In this hands-on activity, students learn about the different realms of the Universe and explore their sizes and relative scales. They will be guided through a process that uncovers the immense sizes of the Sun, Solar System, Solar Neighborhood,... (View More) Milky Way, Local Group, Supercluster, and the observable Universe. The full version of this activity involves students doing simple math computations, however it can also be done without the math. There are some inexpensive materials involved, as well as a powerpoint presentation. It is intended for grades 8-12, but can be adapted down for lower grade levels. (View Less)

In this activity, students use mathematics to understand tides and gravitation and how gravity works across astronomical distances, using an apparatus made from a slinky, meter stick, and a hook. A description of the mathematical relationships seen... (View More) in the demonstration is included. The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This is a set of materials about spectroscopy, including a downloadable PowerPoint presentation and two demonstrations or activities. Learners will read and/or hear about the science of spectroscopy, what a spectrum is, and how spectroscopy is... (View More) important to the study of our Sun. These resources can also accompany the Stanford Solar Center's Build Your Own Spectroscope activity. (View Less)

In this demonstration, students experience the Doppler effect for sound. Students can compute the frequency change for motion along the line of sight (LOS) and determine the vector LOS component for motions not exactly on it. A buzzer, battery,... (View More) bicycle wheel, string and a rubber ball and a timer are needed for the demonstration. The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This is a lesson about observing and examining meteorites in a Meteorite Sample Disc. Learners will practice scientific techniques, develop skills in acquiring data through the senses, observe, examine, record, and sketch data, use magnifying... (View More) glasses, microscopes, and balances, and experience conceptual application. This is lesson 9 of 19 in Exploring Meteorite Mysteries. (View Less)