## You are here

Home ›Now showing results **31-40** of **40**

This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its... (View More) intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide. (View Less)

This is an activity about the movement, or "wandering," of our Earth's magnetic poles. The learner will explore this concept by measuring and calculating the distance the Earth's north magnetic pole has moved over the past 400 years and calculating... (View More) the rate at which the magnetic pole location has changed its position during that time. Finally, learners will use this information to extrapolate how the region for viewing aurorae may change over the next century at the present rate of polar wander. This is Activity 6 in the Exploring Magnetism on Earth teachers guide. (View Less)

This is a booklet containing 24 problem sets that involve a variety of math skills, including scientific notation, simple algebra, and calculus. Each set of problems is contained on one page. Learners will use mathematics to explore varied space... (View More) science topics including solar storms, solar energy, coronal mass ejections, and doppler shift, among others. (View Less)

This is an activity about the periodic reversals of Earth's magnetic field. Learners will graph the frequency of magnetic pole reversals over the past 800,000 years and investigate answers to questions using the graphed data. This is Activity 8 in... (View More) the Exploring Magnetism on Earth teachers guide. (View Less)

This is a booklet containing 20 problem sets that involve a variety of math skills, including equations and substitution, time calculations, reading, algebra, and more. Each set of problems is contained on one page. Learners will use mathematics to... (View More) explore space science topics related to our Sun, auroras, solar features, space weather, sunspots, and solar storms. This booklet can be found on the Space Math@NASA website. (View Less)

Using real data from NASA's Fermi satellite, students determine the size and energy of an active galaxy flare region. This activity includes background information for teachers, student worksheets, procedures, adaptations, extensions, an assessment... (View More) rubric, and related resources. This is activity 3 of 3 in the "Active Galaxies Educator's Guide." (View Less)

This activity focuses on the question, What do active galaxies look like when viewed from different distances? Students work in small groups to learn about the small angle formula, construct a template, and use it to correctly measure the angular... (View More) size of a person. Students then use the Active Galaxies Poster to measure the angular size of a galaxy. Materials are commonly available or inexpensive items, e.g., scissors, cardboard, construction paper, calculator, protractor, meter stick or measuring tape). Includes background information, glossary, essential questions, extension activities, transfer activities, adaptations for visually-impaired students, and an answer key. This is activity 2 of 3 in the Active Galaxies Educators Guide. (View Less)

This is an activity about observing the Sun. Learners will construct a pinhole projector to project an image of the Sun, observe and record the size of the projected image, and calculate the diameter of the Sun using the measurements and a known... (View More) distance to the Sun. This activity is from the Touch the Sun educator guide. (View Less)

Materials Cost: 1 cent - $1 per group of students

This is a lesson about the mathematics of auroras. Learners will be exposed to the mathematical formulas that are used to estimate how much magnetic energy is available in the magnetic tail region of Earth. This is the nineteenth activity in the... (View More) Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)

This is an activity about the movement of sunspots. Learners will project an image of the Sun using a telescope, binoculars, or a pinhole projector, observe and record sunspots over the course of several days, and calculate the speed of the observed... (View More) sunspots to, therefore, determine the rotation rate of the Sun. This activity is from the Touch the Sun educator guide. (View Less)

Materials Cost: Over $20 per group of students