You are here
Home ›Narrow Search
Now showing results 1-10 of 73
The four lessons in this unit build toward a student understanding of each component of the energy budget formula - and how the contribution of each component changes due to location and time of year. In order, the four lessons consist of: deriving... (View More) the formula for Earth’s energy budget, analyzing data from NASA’s CERES instrument, learning to code using the RStudio program, and using RStudio to explore and evaluate the energy budgets of specific locations and seasons. The unit includes a pre/post test; each lesson follows the 5E model and contains worksheets with answer keys. (View Less)
Through the use of rhythm patterns of sounds presented in a solar system model, learners will collect data to determine orbital periods. Then, using that data, they will derive Kepler’s Third Law (the relationship between the distance of planets... (View More) from the sun and their orbital periods) and apply the equation to search for exoplanets in orbit around extrasolar systems. Educator resources include a 5E instructional lesson and alignments with Next Generation Science Standards (NGSS): ESS1.B: Earth and the Solar System. This resource is part of the Infiniscope space exploration experiences. (View Less)
Beginning with an online interactive exploration of Karijini Gorge in Australia and Oak Creek Canyon in Sedona, AZ, learners gather geologic evidence regarding the formation of the red rocks found in each. They then apply that information to support... (View More) a hypothesis as to why the rocks on Mars are red. Educator resources include a 5E instructional lesson and alignments with Next Generation Science Standards (NGSS); the NRC Framework for K-12 Science Education; Common Core State Standards for English Language Arts; and A Framework for 21st Century Learning. This resource is part of the Infiniscope space exploration experiences. (View Less)
NuSTAR has a 10-meter rigid mast that separates the optics from the detector. Inspired by this, students will design, test, and build a lightweight mast 1 meter tall that can fully support the weight of a typical hardcover textbook (~2 kg). The... (View More) footprint of the mast must be no larger than 11" x 14". This activity is from the NuSTAR Educators Guide: X-Rays on Earth and from Space, which focuses on the science and engineering design of NASA's NuSTAR mission. The guide includes a standards matrix, assessment rubrics, instructor background materials, and student handouts. (View Less)
Students will use the law of reflection to reflect a laser beam off multiple mirrors to hit a sticker in a shoebox. Since X-ray telescopes must use grazing angles to collect X-rays, students will design layouts with the largest possible angles of... (View More) reflection. This activity is from the NuSTAR Educators Guide: X-Rays on Earth and from Space, which focuses on the science and engineering design of NASA's NuSTAR mission. The guide includes a standards matrix, assessment rubrics, instructor background materials, and student handouts. (View Less)
This series of laboratory lessons and activities uses authentic solar imagery and data to introduce students to solar science. Students are asked to explore details in imagery, including how to deal with the issues of noise and resolution, and... (View More) understand scale. They are introduced to the concept of space weather and how that affects both observing instruments and the Earth. Students learn about spectra, how helium and coronium were discovered, and go on to explore real spectra from the Sun. Most activities are mathematically based, and targeted for grades 9-10. Imagery is included from NASA/ESA's SOHO mission, NASA's SDO mission, and Japan's Hinode satellite. (View Less)
This collection of activities is based on a weekly series of space science mathematics problems distributed during the 2012-2013 school year. They were intended for students looking for additional challenges in the math and physical science... (View More) curriculum in grades 5 through 12. The problems were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. The problems were designed to be one-pagers with a Teacher’s Guide and Answer Key as a second page. (View Less)
This activity is a short engineering design challenge to be completed by individual students or small teams. A real-world problem is presented, designing buildings for hurricane-prone areas, but in a simulated way that works in a classroom, after... (View More) school club, or informal education setting. Students are given simple materials and design requirements, and must plan and build a tower as tall as possible that will hold up a tennis ball while resisting the force of wind from a fan. After the towers are built, the group comes together to test them. If there is time after testing, which can be observational or framed as a contest between teams, students can redesign their towers to improve their performance, or simply discuss what worked well and what didn’t in their designs. (View Less)
Materials Cost: $1 - $5 per group of students
This is a math-science integrated unit about spectrographs. Learners will find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, the students will build their... (View More) own spectrographs in groups and research and design a ground or space-based mission using their creation. After the project is complete, student groups will present to the class on their trials, tribulations, and findings during this process. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
This is a lesson about using the light from the star during an occultation event to identify the atmosphere of a planet. Learners will add and subtract light curves (presented as a series of geometrical shapes) to understand how this could occur.... (View More) The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)