You are here
Home ›Narrow Search
Now showing results 1-10 of 153
Students simulate the process of remote sensing by using common materials to represent Earth’s different ground coverings and a light meter to represent satellite instruments. The concept of albedo and its importance in Earth’s radiation budget... (View More) are introduced. The lesson uses the 5E instructional model and is part of the book, "Tour of the Electromagnetic Spectrum." (View Less)
Materials Cost: $1 - $5 per group of students
A Hovmuller plot is a diagram that visibly displays data patterns from a selected latitude or longitude over a time period. Through a storyline and several samples, students are introduced to a Hovmuller plot of temperature data along a longitude in... (View More) the eastern United States. Students then create salinity and precipitation plots using data from the MY NASA DATA Live Access Server. (View Less)
Students will use the law of reflection to reflect a laser beam off multiple mirrors to hit a sticker in a shoebox. Since X-ray telescopes must use grazing angles to collect X-rays, students will design layouts with the largest possible angles of... (View More) reflection. This activity is from the NuSTAR Educators Guide: X-Rays on Earth and from Space, which focuses on the science and engineering design of NASA's NuSTAR mission. The guide includes a standards matrix, assessment rubrics, instructor background materials, and student handouts. (View Less)
Students participate in a series of activities to discover how astronomers use computers to create images and understand data. No programming experience is required; students will use pencilcode.net to complete such activities as creating a color,... (View More) exploring filters and color-shifting, and creating individual images of star-forming regions. These activities demonstrate a real world application of science, technology and art. (View Less)
This activity demonstrates optical properties of water: that different constituents in water affect the transmission, absorption, and scattering of different colors in the visible light spectrum. Inexpensive, off-the-shelf components are used to... (View More) build a light sensor and source, creating a simple spectrophotometer that can measure light absorption. In the second part of this activity, principles of ocean color remote sensing are applied to measure reflectance. Using components that are clearly visible allows students to configure them in different ways. Playing with the instrument design gives students a practical understanding of spectrophotometers, in-water optics, and remote sensing. As an extension of this concept, students are encouraged to think about how ocean color is used to estimate the concentration of chlorophyll to infer phytoplankton abundance, colored dissolved organic matter, and suspended sediments. (View Less)
This is an online lesson associated with activities during Solar Week, a twice-yearly event in March and October during which classrooms are able to interact with scientists studying the Sun. This activity is scheduled to occur during Monday of... (View More) Solar Week. The lesson introduces the concept of astronomical filters and their connections to imaging different objects in space. Learners will explore perceptions of images as seen using different colors of light, construct a filter wheel, and practice investigating various astronomical images using the filter wheel. This material was designed to highlight how filters are useful to astronomers and show how a real astronomical telescope uses filters to image the Sun. Outside of Solar Week, information, activities, and resources are archived and available online at any time. (View Less)
This collection of math problems is based on a weekly series of space and Earth science problems distributed to teachers during the 2013-2014 school year. The problems were intended for students looking for additional challenges in the math and... (View More) physical science curriculum and were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. Includes information for teachers and answer key. (View Less)
Become a crime scene investigator! Learners model Dawn Mission scientists, engineers, and technologists and how they use instrumentation to detect distant worlds. After a briefing to build context, students explore interactions between different... (View More) frequencies/wavelengths of the electromagnetic spectrum and matter as they investigate the different ways scientists gather and understand remote sensing data, using Dawn instruments as examples. This module is organized around a learning cycle, engaging students through several experiences to activate students' prior knowledge and assess conceptual understanding, informing next steps. (View Less)
Students combine science and systems engineering to develop a mission to search for life in our solar system. The mission must meet budgetary, mass and power constraints while still producing significant science. An extensive set of "equipment... (View More) playing cards" determines all critical mission factors such as mass limit, cost, weight, scientific instruments, mobility, and all systems- including power, computer, communication, instrumentation, mechanical, as well as entry, descent and landing. The equipment cards, a design mat and student worksheets are included. The lesson is part of the Mars Education Program series; it models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. Next Generation Science Standards are listed. (View Less)
Air traffic (and therefore airplane contrails) was halted nationwide for nearly three days following September 11, 2001. Students will investigate whether that stoppage resulted in any changes to cloud cover, temperature and/or radiation. Using the... (View More) MY NASA DATA Live Access Server (LAS), students gather satellite data on each of the three atmospheric parameters around that time frame. Working in teams, they read, compare and discuss two accompanying articles, then use the data from the LAS to create a PowerPoint presentation contending whether it was the lack of contrails or simply natural weather patterns at the time that was responsible for the increase in the range of temperatures. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It includes detailed procedures, analysis questions, teacher notes, related links, background information, lesson extensions, and a list of related AP Environmental Science topics. (View Less)