You are here
Home ›Now showing results 11-20 of 194
This unit consists of two parts, each with several activities which require students to participate in investigations, discussions, computer data analysis, role-playing, and research. In Part 1, students examine the roles of Earth's energy balance... (View More) and the greenhouse effect in creating and affecting climate. Part 2 focuses on the biosphere as a system. Students examine the interactions of organisms, the effects of climate change on food webs, and the importance to humans of a healthy, intact ecosystem. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This short (11:29 minutes) video features NASA scientists answering a set of student-designed questions related to NASA’s Global Precipitation Measurement satellite mission. The set of twelve questions were generated after students viewed... (View More) animations of GPM data; the questions centered on satellite operations, satellite data, and precipitation patterns and impacts. (View Less)
This activity demonstrates optical properties of water: that different constituents in water affect the transmission, absorption, and scattering of different colors in the visible light spectrum. Inexpensive, off-the-shelf components are used to... (View More) build a light sensor and source, creating a simple spectrophotometer that can measure light absorption. In the second part of this activity, principles of ocean color remote sensing are applied to measure reflectance. Using components that are clearly visible allows students to configure them in different ways. Playing with the instrument design gives students a practical understanding of spectrophotometers, in-water optics, and remote sensing. As an extension of this concept, students are encouraged to think about how ocean color is used to estimate the concentration of chlorophyll to infer phytoplankton abundance, colored dissolved organic matter, and suspended sediments. (View Less)
This online Flash interactive simulates the process of discovering new exoplanets using the transit method. Learners explore a simulated star field, record data, make measurements and do calculations to discover new planets. Instructional videos and... (View More) guides are included. (View Less)
Become a crime scene investigator! Learners model Dawn Mission scientists, engineers, and technologists and how they use instrumentation to detect distant worlds. After a briefing to build context, students explore interactions between different... (View More) frequencies/wavelengths of the electromagnetic spectrum and matter as they investigate the different ways scientists gather and understand remote sensing data, using Dawn instruments as examples. This module is organized around a learning cycle, engaging students through several experiences to activate students' prior knowledge and assess conceptual understanding, informing next steps. (View Less)
This series of laboratory lessons and activities uses authentic solar imagery and data to introduce students to solar science. Students are asked to explore details in imagery, including how to deal with the issues of noise and resolution, and... (View More) understand scale. They are introduced to the concept of space weather and how that affects both observing instruments and the Earth. Students learn about spectra, how helium and coronium were discovered, and go on to explore real spectra from the Sun. Most activities are mathematically based, and targeted for grades 9-10. Imagery is included from NASA/ESA's SOHO mission, NASA's SDO mission, and Japan's Hinode satellite. (View Less)
Emphasizing the synergies between science and engineering, these video clips highlight the research of professional ocean scientists and engineers in various disciplines. The clips are accompanied by additional relevant content including images,... (View More) data visualizations, graphs, animations, and other information. Content has been organized into more than a dozen thematic areas such as Solving Old Problems with New Technology and Small Scale Observations and Large Scale Ideas. All content has been aligned with science and engineering practices from the Next Generation Science Standards, including "asking questions and solving problems" and "planning and carrying out investigations," providing applicable resources for teachers who want to provide role models of effective practice for their students. (View Less)
This set of three videos illustrates how math is used in satellite data analysis. NASA climate scientist Claire Parkinson explains how the Arctic and Antarctic sea ice covers are measured from satellite data and how math is used to determine trends... (View More) in the data. In the first video, she leads viewers from satellite data collection through obtaining a time series of monthly Arctic and Antarctic average sea ice extents for November 1978-December 2016. In the second video, she begins with the time series from the first video, removes the seasonal cycle by calculating yearly averages, and proceeds to calculate the slopes of the lines to get trends in the data, revealing decreasing sea ice coverage in the Arctic and increasing sea ice coverage in the Antarctic. In the third video, she uses a more advanced technique to remove the seasonal cycle and shows that the trends are close to the same, whichever method is used. She emphasizes the power of math and that the techniques shown for satellite sea ice data can also be applied to a wide range of data sets. Note: See Related & Supplemental Resources for the maps and data files (1978-2016) that will allow you to do the calculations shown in the video. These also include data for different regions of the Arctic and Antarctic, enabling learners to do additional calculations beyond those shown in the videos. (View Less)
Using three images from the Wide-field Infrared Survey Explorer (WISE) mission, students measure and analyze infrared light from objects to identify Brown Dwarfs and Ultra-Luminous Infrared Galaxies (ULIRGs). The lesson includes a teacher’s guide,... (View More) student worksheet and PowerPoint presentation (which contains the three images to be analyzed). (View Less)
Air traffic (and therefore airplane contrails) was halted nationwide for nearly three days following September 11, 2001. Students will investigate whether that stoppage resulted in any changes to cloud cover, temperature and/or radiation. Using the... (View More) MY NASA DATA Live Access Server (LAS), students gather satellite data on each of the three atmospheric parameters around that time frame. Working in teams, they read, compare and discuss two accompanying articles, then use the data from the LAS to create a PowerPoint presentation contending whether it was the lack of contrails or simply natural weather patterns at the time that was responsible for the increase in the range of temperatures. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It includes detailed procedures, analysis questions, teacher notes, related links, background information, lesson extensions, and a list of related AP Environmental Science topics. (View Less)