You are here
Home ›Now showing results 1-10 of 30
Students use a dipole magnet and compass to model and map Earth's magnetic field. They then induce a magnetic field to represent a Ring Current in order to observe the response to a fluctuating electric current caused by a solar storm. The lesson... (View More) includes background information, procedures, worksheets, answer keys and graphics. Next Generation Science Standards (NGSS) are listed. (View Less)
Become a crime scene investigator! Learners model Dawn Mission scientists, engineers, and technologists and how they use instrumentation to detect distant worlds. After a briefing to build context, students explore interactions between different... (View More) frequencies/wavelengths of the electromagnetic spectrum and matter as they investigate the different ways scientists gather and understand remote sensing data, using Dawn instruments as examples. This module is organized around a learning cycle, engaging students through several experiences to activate students' prior knowledge and assess conceptual understanding, informing next steps. (View Less)
This paper model shows the orbit of Comet ISON (late 2013) with respect to the innermost planets of the solar system. After reading background information about comets - how they form and where they come from - students cut out and tape together the... (View More) pieces of the model provided to show its orbital pathway (a single page of parts that can be assembled using just scissors and adhesive). Links are provided to related classroom activities and additional resources. (View Less)
This activity allows participants to build a paper model of the GPM Core Observatory and learn about the technology the satellite uses to measure precipitation from space. Directions explain how to cut, fold and glue the individual pieces together... (View More) to make the model. The accompanying information sheet has details about the systems in the satellite including the Dual-frequency Precipitation Radar (DPR), the GPM Microwave Imager (GMI), the High Gain Antenna, avionics and star trackers, propulsion system and solar array, as well as a math connection and additional engineering challenges. (View Less)
Materials Cost: 1 cent - $1 per group of students
This is a make-it-yourself planisphere designed to show where Kepler is pointing. Learners can use it to locate exoplanets around stars in the night sky. It comes with two wheels: one with coordinate grid for plotting additional exoplanet stars and... (View More) one without grid that is easier to read; and two holders for varying latitudes (one for 30°-50° and one for 50°-70°). The product is updated approximately annually to incorporate improvements and any newly discovered planets orbiting naked eye stars. (View Less)
Materials Cost: 1 cent - $1 per student
In this demonstration activity, students make structural models of gas molecules using pipe cleaners and polystyrene balls and test their molecules for their resonant frequency. Students shake the models, count vibrations, and compare the resonance... (View More) frequencies of different gases. Students learn that photons of infrared energy vibrate at the right frequency to transfer their energy to carbon dioxide and methane, which in turn causes those molecules to vibrate, which is experienced in the real world as heat. The teacher's guide includes illustrative videos for this resource. This activity is supported by a textbook chapter, What's So Special about CO²?, part of the unit, Climate Change, in Global Systems Science (GSS), an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact. (View Less)
The H-R diagram is a scatter graph of stars, a plot of stellar absolute magnitude or luminosity versus temperature or stellar classification. It is an important astronomical tool for understanding how stars evolve over time. Stellar evolution cannot... (View More) be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. In this activity, students plot both maxima and minima with corresponding stellar classifications for several variables, and then identify the type of variability: Cepheid, RR Lyrae, Mira or Semiregular. This activity includes background information, a teacher guide, a student activity, and accompanying worksheets. The American Association of Variable Star Observers (AAVSO) and The Chandra X-Ray mission have collaborated to develop this activity. (View Less)
This booklet introduces electromagnetic waves, their behaviors, and how scientists visualize these data. Each region of the spectrum is described and illustrated with examples of NASA science. It is a companion piece to the video series under the... (View More) same title. (View Less)
In this lesson, students measure the size of several galaxies to reproduce a plot of Hubble's Law. The goal of this lesson is to give students the chance to simulate the process that led to the notion that the universe is expanding, provide insight... (View More) into how this idea was reached, and inform students about the nature of our universe.Includes an extension activity, "Hubble's Law Mis-calibration." This lesson is part of the Cosmic Times teacher's guide and is intended to be used in conjunction with the 1929 Cosmic Times Poster. (View Less)
This is an activity about observing and mapping sunspots by direct solar observation. Learners will use a small telescope, binoculars, or a Sunspotter to create a projected image of the Sun and trace the position of any observed sunspots on a piece... (View More) of paper. Additionally, learners will mark the direction of the Sun image’s motion. This is Activity 2 of the Space Weather Forecast curriculum. (View Less)