You are here
Home ›Narrow Search
Now showing results 1-10 of 20
This slide set focuses on the first discovery of an Earth-like planet orbiting a Sun-like star. It is one of a series of short, topical presentations on new developments from NASA astrophysics missions, relevant to introductory astronomy topics.... (View More) These resources are intended to help instructors include the latest discoveries (not yet in their textbooks) into their courses. The slide sets are constructed to be easily included as a lecture supplement including synopsis, references, and graphics. (View Less)
This slide set focuses on new information learned about galaxy evolution thanks to multiwavelength observations of M101. It is one of a series of short, topical presentations on new developments from NASA astrophysics missions, relevant to... (View More) introductory astronomy topics. These resources are intended to help instructors include the latest discoveries (not yet in their textbooks) into their courses. The slide sets are constructed to be easily included as a lecture supplement including synopsis, references, and graphics. (View Less)
This collection of math problems is based on a weekly series of space and Earth science problems distributed to teachers during the 2013-2014 school year. The problems were intended for students looking for additional challenges in the math and... (View More) physical science curriculum and were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. Includes information for teachers and answer key. (View Less)
This slide set focuses on the discovery of an intermediate mass black hole in M83. It is one of a series of short, topical presentations on new developments from NASA astrophysics missions, relevant to introductory astronomy topics. These resources... (View More) are intended to help instructors include the latest discoveries (not yet in their textbooks) into their courses. The slide sets are constructed to be easily included as a lecture supplement including synopsis, references, and graphics. (View Less)
Emphasizing the synergies between science and engineering, these video clips highlight the research of professional ocean scientists and engineers in various disciplines. The clips are accompanied by additional relevant content including images,... (View More) data visualizations, graphs, animations, and other information. Content has been organized into more than a dozen thematic areas such as Solving Old Problems with New Technology and Small Scale Observations and Large Scale Ideas. All content has been aligned with science and engineering practices from the Next Generation Science Standards, including "asking questions and solving problems" and "planning and carrying out investigations," providing applicable resources for teachers who want to provide role models of effective practice for their students. (View Less)
This set of three videos illustrates how math is used in satellite data analysis. NASA climate scientist Claire Parkinson explains how the Arctic and Antarctic sea ice covers are measured from satellite data and how math is used to determine trends... (View More) in the data. In the first video, she leads viewers from satellite data collection through obtaining a time series of monthly Arctic and Antarctic average sea ice extents for November 1978-December 2016. In the second video, she begins with the time series from the first video, removes the seasonal cycle by calculating yearly averages, and proceeds to calculate the slopes of the lines to get trends in the data, revealing decreasing sea ice coverage in the Arctic and increasing sea ice coverage in the Antarctic. In the third video, she uses a more advanced technique to remove the seasonal cycle and shows that the trends are close to the same, whichever method is used. She emphasizes the power of math and that the techniques shown for satellite sea ice data can also be applied to a wide range of data sets. Note: See Related & Supplemental Resources for the maps and data files (1978-2016) that will allow you to do the calculations shown in the video. These also include data for different regions of the Arctic and Antarctic, enabling learners to do additional calculations beyond those shown in the videos. (View Less)
This collection of 160 math problems covers the 20 science topic themes presented by the NASA/JPL Year of the Solar System (YOSS) website, covering the solar system, planets, the search for life, and robotics. Examples of topics included are: scale... (View More) of the solar system; asteroids; comets; moons and rings; volcanism in the solar system; ice in the solar system; water in the solar system; the Sun, transits and eclipses; astrobiology; magnetosphers and more. It is intended as a mathematics supplement for the science content presented at the YOSS website, and features grade-appropriate and Common Core State Standards-based math problems based on science content for grades 3-12. (View Less)
This chapter describes how to set a scale and measure distances and areas on satellite images. Using ImageJ, a freely available image analysis program that runs on most operating systems, users set the spatial calibration of an image, then select... (View More) and measure distances and areas on it. The measurement results are reported in real-world units. The technique is most useful and accurate for nadir view (straight down) images. In this chapter, users examine satellite images of the Aral Sea, which has shrunk dramatically since 1960 because the rivers that flow into it have been tapped for irrigation. Users access satellite images of the region, then set a scale and measure the width of the sea each year. On another set of images, they highlight areas that represent water and measure them to see how these areas of the sea changed. This chapter is part of the Earth Exploration Toolbook, which provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)
In this activity, users download and graph modeled climate data to explore variability in climate change. Most people know that climate changes are predicted over the next hundred years, but they may not be aware that these changes are likely to... (View More) vary from region to region. Using data from the University of New Hampshire's EOS-WEBSTER, a digital library of Earth Science data, users will obtain annual predictions for minimum temperature, maximum temperature, precipitation, and solar radiation for each of these 5 states: New York, Georgia, Colorado, Minnesota, and California. Data will span the years 2000 through 2100. Users will import the data into Excel and analyze it to see what, if any, regional variability exists. Finally, they will download data for their own state, compare these results with the results from the other 5 states and use their results to answer questions related to climate change. This chapter is part of the Earth Exploration Toolbook (EET). Each EET chapter provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)
Users explore data, using My World GIS, that characterize the dynamic Greenland Ice Sheet. By examining photographs, map views, and tabular data, users gain an understanding of how and why scientists are monitoring the ice sheet and what they are... (View More) finding. Users explore map layers that represent ice sheet thickness, weather station locations, and annual melt extents of the ice sheet. They learn about the working conditions that Arctic scientists must endure to collect their data, and how sensors on satellites are used to gather information from an area as large as Greenland. Finally, users learn about scientists' methods for measuring ice flowing downhill from Greenland, and examine that data to learn how fast the ice is moving. This chapter is part of the Earth Exploration Toolbook, which provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)