You are here
Home ›Now showing results 1-10 of 39
This is an activity about color. Participants will use scientific practices to investigate answers to questions involving the color of the sky, sunsets, the Sun, and oceans. This activity requires use of a clear acrylic or glass container to hold... (View More) water, a strong flashlight, batteries for the flashlight, and powdered creamer or milk. (View Less)
This activity is a short engineering design challenge to be completed by individual students or small teams. A real-world problem is presented, designing buildings for hurricane-prone areas, but in a simulated way that works in a classroom, after... (View More) school club, or informal education setting. Students are given simple materials and design requirements, and must plan and build a tower as tall as possible that will hold up a tennis ball while resisting the force of wind from a fan. After the towers are built, the group comes together to test them. If there is time after testing, which can be observational or framed as a contest between teams, students can redesign their towers to improve their performance, or simply discuss what worked well and what didn’t in their designs. (View Less)
Materials Cost: $1 - $5 per group of students
This is an activity about scale. Participants will arrange imagery of Earth and many other space objects in order of their size from smallest to largest, their distance from Earth's surface, their temperature from coolest to hottest, and/or their... (View More) age from youngest to oldest. By manipulating these images and discussing their ideas, children and adults represent and confront their own mental models of space and time. (View Less)
Learners will visit a sequence of stations to discover how the dark and light areas and craters we see on the Moon's face today record major events of its lifetime. While they may visit the stations in any order, the stations trace the Moon's... (View More) 4.5-billion-year history from "infancy" to the imagined future. The children tie together major events in the Moon's geologic history as a series of comic panels in their Marvel Moon comic books. At each station, the children identify the lunar features that were produced during that era on a Moon map. This activity is part of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)
Learners use a Styrofoam ball, sunlight, and the motions of their bodies to model the Moon's phases outdoors. An extension is to have children predict future Moon phases. This activity is part of Explore! Marvel Moon, a series of activities... (View More) developed specifically for use in libraries. (View Less)
This is an activity about the rotation of the Moon. Learners use a penny and a quarter to model that the Moon does indeed spin on its axis as it orbits the Earth. They find that the Moon keeps the same face toward the Earth, but receives... (View More) illumination from the Sun on all sides in turn. This activity is part of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)
This is an activity about the Moon's formation, changes over time, gravitational connection to Earth, or influence on our culture and urban legends. Learners share their learning by creating zines: small, self-published magazines inexpensively... (View More) duplicated on standard letter paper and folded into eight-page booklets. This is the concluding activity of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)
This is an activity about Lunar samples. Learners will see snapshots of the Moon's history and hold an important artifact of American history with a Lunar Sample Disk. Earth rocks and soil of similar types as the lunar samples may be provided and... (View More) explored with hands, eyes, noses, and tools. Please note, checking out a Lunar Sample Disk requires training, a secure storage facility, and a minimum of a 6-week lead time. This activity is part of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)
This activity is about viewing the planet Mars (and others) through a telescope. Learners will go outside on a clear evening to view the planets and other celestial bodies for themselves. Using sky charts and other resources, and possibly in... (View More) partnership with a local astronomical society or club, children and their families view Mars with binoculars and/or telescopes. The children who have participated in the other Explore: Life on Mars? activities may serve as docents at this public, community event, sharing what they have done and learned about what life is, the requirements for life, and the possibility for life on Mars now — or in the past! It is recommended that the viewing event be paired with the hands-on experiment within the Searching for Life activity if space and time allow. It also includes specific tips for effectively engaging girls in STEM. This is activity 8 in Explore: Life on Mars? that was developed specifically for use in libraries. (View Less)
This module focuses on ultraviolet radiation on Earth and in space and how it affects life. Learners will construct their own "martian" using craft materials and UV beads. They will explore how UV radiation from the Sun can affect living things,... (View More) comparing conditions on Earth and Mars, and then discuss ways in which organisms may protect themselves from UV radiation. They will then take part in a Mars Creature Challenge, where they will change their creature to help it survive harsh UV conditions — like on Mars. They will then test their Mars creatures by subjecting them to different environmental conditions to see how well they "survive" in a martian environment. This investigation will explore shelter and protection as one of life’s requirements and how Earth’s atmosphere protects life from harmful UV radiation. It also includes specific tips for effectively engaging girls in STEM. This is activity 5 in Explore: Life on Mars? that was developed specifically for use in libraries. (View Less)