## You are here

Home ›Now showing results **1-10** of **10**

In this activity, students are reminded that the Universe is made up of elements and that the heavier elements are created inside of a star. They are then introduced to the life cycle of a star and how a star's mass affects its process of fusion and... (View More) eventual death. Students discuss the physical concept of equilibrium as a balancing of forces and observe an experiment to demonstrate what happens to a soda can when the interior and exterior forces are not in equilibrium. An analogy is made between this experiment and core collapse in stars, to show the importance of maintaining equilibrium in stars. Finally, students participate in an activity which demonstrates how mass is ejected from a collapsed star in a supernova explosion, thereby dispersing heavier elements throughout the Universe. This activity is part of a series that has been designed specifically for use with Girl Scouts, but the activities can be used in other settings. Most of the materials are inexpensive or easily found. It is recommended that a leader with astronomy knowledge lead the activities, or at least be available to answer questions, whenever possible. (View Less)

This planetarium show is designed to engage visitors directly in activities and demonstrations, and is optimized for group sizes of 25 to 70 people. Show content includes general planet-finding techniques (Doppler, astrometric, etc.), an audience... (View More) activity about the transit method of extrasolar planet discovery, NASA Kepler mission, and Johannes Kepler's work. It is 50-minutes long, but modular, so that it can be adjusted for shorter lengths (suggestions for 30-minute and 40-minute versions are provided in the script). The script, images, movies and music are available for free download at the website provided. (View Less)

Students are introduced to the periodic table and the concept of atomic elements. The group discusses how all material in the Universe is composed of elements and that the atom is the smallest particle that still has the physical and chemical... (View More) properties of any given element. As an exercise in statistics, the students participate in a counting experiment in which they sample a 'Universe bead mix' (where each bead color represents a different element present in the Universe) to estimate the overall composition of the Universe. They compare their findings of the Universe's overall composition with the composition of various different objects in the Universe that are represented by mixtures of rice, beans and other dried goods in jars. Finally, students are introduced to the idea that hydrogen fusion creates heavier elements inside a star. This activity is part of a series that has been designed specifically for use with Girl Scouts, but the activities can be used in other settings. Most of the materials are inexpensive; however, some portions of the preparation can be time intensive. It is recommended that a leader with astronomy knowledge lead the activities, or at least be available to answer questions, whenever possible. (View Less)

Students are introduced to the scientific tool of spectroscopy. They each build a simple spectroscope to examine the light from different light sources, particularly the Sun (Warning: Do not look directly at the Sun) and artificial lights (e.g.,... (View More) fluorescent or sodium lamps). Students compare the continuous spectrum of incandescent lights and the solar spectrum with the clear spectral lines of the fluorescent or sodium room lights and discharge lamps. They learn how the spectral "fingerprints" of each particular element help astronomers recognize the presence of specific elements in distant astronomical objects. Students are also introduced to the broader electromagnetic spectrum beyond what is visible with our eyes and how scientists observe distant objects using multiple wavelength bands. This activity is part of a series that has been designed specifically for use with Girl Scouts, but the activities can be used in other settings. Most of the materials are inexpensive. (View Less)

Students are introduced to the basic properties, behavior and detection of black holes through a brief discussion of common conceptions and misconceptions of these exciting objects. They "act out" a way black holes might be detected through their... (View More) interaction with other objects. In this activity, girls represent binary star systems in pairs, walking slowly around one another in a darkened room with each pair holding loops of wire to simulate the gravitational interaction. Most of the students are wearing glow-in-the-dark headbands to simulate stars, some are without headbands to represent black holes, and a small set of the black holes have flashlights to simulate X-ray emission. This activity is part of a series that has been designed specifically for use with Girl Scouts, but the activities can be used in other settings. Most of the materials are inexpensive or easily found. It is recommended that a leader with astronomy knowledge lead the activities, or at least be available to answer questions, whenever possible. (View Less)

This board game challenges players (ages 10+) to build a spaceship and fly to a black hole. The game provides opportunities for understanding phenomena based on current black hole research. During the game, players will experience the dangers and... (View More) excitement of a real space mission, and learn about the nature of black holes by launching scientific probes. The game can be played competitively or as a team (instructions are also provided for playing in large groups. Black Hole Explorer consists of: Game Board, Game Rules, Spacecraft Data sheets, Science Briefing Room document, Event cards (28), Probe result cards (12), Energy tokens (140). Game components are available as PDF downloads; dice and game pieces must be provided by the user. NOTE: tokens and cards need to be cut to size from letter-size cardstock. (View Less)

In this activity, students construct base-two slide rules that add and subtract base-2 exponents (log distances), in order to multiply and divide corresponding powers of two. Students use these slide rules to generate both log and antilog equations,... (View More) learning to translate one in terms of the other. This is activity C1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students use log tapes and base-two slide rules as references to graph exponential functions and log functions in base-10 and base-2. Students discover that exponential and log functions are inverse, reflecting across the y = x axis... (View More) as mirror images. This is activity E2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, the GLAST mission was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct Log Rulers, finely calibrated in base-10 exponents and numbers (logs and antilogs). They practice reading these scales as accurately as possible, listing all certain figures plus one uncertain figure. This is... (View More) activity D1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity, students graph second and third order functions, discovering an inverse relationship between squares and square roots and between cubes and cube roots. Students graph these functions on both linear grid (evenly spaced numbers), and... (View More) a log-log grid (evenly space exponents). Graph lines that curve on linear grids transform into straight lines on the log-log grids, with slopes equal to their exponential powers. This activity is activity E3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)