## You are here

Home ›Now showing results **1-7** of **7**

This resource describes the physics behind the formation of clouds, and provides a demonstration of those principles using a beaker, ice, a match, hot water, and a laser pointer. This resource is from PUMAS - Practical Uses of Math and Science - a... (View More) collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

In this demonstration, evidence of the Earth's rotation is observed. A tripod, swiveling desk chair, fishing line and pendulum bob (e.g., fishing weight or plumb bob) are required for the demonstration. This resource is from PUMAS - Practical Uses... (View More) of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This experimental activity is designed to develop a basic understanding of the relationship between temperature and pressure and that a barometer can be constructed to detect this relationship. Resources needed to build a simple barometer include a... (View More) canning jar with metal lid ring, large balloon, a block of wood, ruler, a nail, wood glue, hammer and a screwdriver. The resource includes background information, teaching tips and questions to guide student discussion. This is chapter 6 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations. (View Less)

Materials Cost: $1 - $5 per group of students

This is an activity about measuring angular size and understanding the solar and lunar proportions that result in solar eclipses. Learners will use triangles and proportions to create a shoebox eclipse simulator. They will then apply what they learn... (View More) about angular size to predict the diameter and distance of one object that can be eclipsed by another. They will also complete three journal assignments to record observations and conceptual understanding. This activity derives from those demonstrated in the NASA CONNECT television series episode, titled Path of Totality. (View Less)

This activity lets students measure distances in the classroom using parallax. The exercise can be done either at a high school level using trigonometric functions, or at a middle school level using simple arithmetic approximations to the... (View More) trigonometric functions. A work sheet is provided for the middle-school-level activity.The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

Students will work in teams to create visual models to assist in understanding the volume of surface ozone in the air. Students construct cubes of different volumes and compare them to get a feel for parts per million by volume and parts per billion... (View More) by volume. Resource includes a paper template for creating the cube and a student worksheet. This is a learning activity associated with the GLOBE Atmosphere investigations and is supported by the Atmosphere chapter of the GLOBE Teacher’s Guide. (View Less)

Materials Cost: 1 cent - $1 per group of students

This is a lesson about mapping objects using triangulation. Learners hunt distant meteorites using geometric properties and relationships, demonstrate and experience triangulation, and apply triangulation to directed and group-challenge mapping... (View More) activities. Activities, vocabulary words, and experimental extensions are included. This is lesson 2 of 19 in Exploring Meteorite Mysteries. (View Less)