You are here
Home ›Now showing results 1-10 of 24
Explore lunar phases as viewed from Earth using a golf ball and an ultraviolet light. With the student's head representing Earth, students hold and move the golf ball to demonstrate the cause of the Moon's phases in their correct order. Related Next... (View More) Generation Science Standards (NGSS) are listed. (View Less)
Materials Cost: $1 - $5 per group of students
Learners will review the structure, content and size of the Solar System. This lesson is designed using the 5E instructional model and includes: teacher training, unit pacing guides, essential questions, a black-line master science notebook, a... (View More) student presentation booklet, supplemental materials, and vocabulary for both students and teachers. This is lesson 1 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
This is a lesson about how to answer a scientific or engineering question. Learners will refine the scientific question they generated in Lesson 5 so that it can be answered by data and/or modeling, brainstorm possible solutions for the scientific... (View More) question chosen, determine reasonableness of solutions, use concept maps to enhance meaningful learning. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, two Vocabulary Cards, and a concept map supplement. This is lesson 6 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
After creating a model of multiple volcanic lava flows, students analyze the layers, sequence the flows, and interpret the stratigraphy. Students use that same volcanic layering model to investigate relative dating and geologic mapping principles-... (View More) which they will then apply to satellite imagery. The lesson is part of the Mars Education Program series; it models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. (View Less)
In this activity, learners replicate the scientific processes of observing, forming an explanation, revising and communicating about a model of a comet. Learners construct a model of features of a comet using an assortment of common craft supplies.... (View More) This activity relates to several NASA comet missions such as Deep Impact, Stardust, Stardust-NExT, and EPOXI and can be used to emulate a process that scientists and engineers follow on all missions. (View Less)
Materials Cost: $1 - $5 per group of students
This is an activity about bar magnets and their invisible magnetic fields. Learners will experiment with magnets and a compass to detect and draw magnetic fields. This is Activity 1 of a larger resource, entitled Exploring the Sun. The NASA... (View More) spacecraft missions represented by this material include SOHO, TRACE, STEREO, Hinode, and SDO. (View Less)
This is an activity about measuring angular size and understanding the solar and lunar proportions that result in solar eclipses. Learners will use triangles and proportions to create a shoebox eclipse simulator. They will then apply what they learn... (View More) about angular size to predict the diameter and distance of one object that can be eclipsed by another. They will also complete three journal assignments to record observations and conceptual understanding. This activity derives from those demonstrated in the NASA CONNECT television series episode, titled Path of Totality. (View Less)
This is a detailed historical lesson about comets, distant icy worlds often visible to observers on Earth. Learners will consider the essential question, "What are comets?" They will practice observation skills as they enact a story of comets... (View More) traveling through the solar system and examine images of comets and the current space missions exploring them. This is lesson 10 of 12 in the unit, Exploring Ice in the Solar System. (View Less)
This is an activity about the Earth-Moon system. Learners will build a scale model of the Earth-Moon system and predict the distance between the two, as well as the distance of Earth-orbiting spacecraft.
This is an activity about the magnetic fields of the Sun and Earth, and the interplanetary magnetic field, or IMF. Learners will engage in a question and answer dialogue, make connections using bar magnet examples and overhead transparencies, and... (View More) ultimately write an assessment of concepts learned. This is Activity 1 in Session 3 of the Exploring Magnetism in the Solar Wind teachers guide. (View Less)