## You are here

Home ›Now showing results **21-30** of **84**

The emphasis of this lesson is deepening students' understanding of how and why we measure precipitation across the globe. Students will look at NASA Tropical Rainfall Measuring Mission (TRMM) data gathered during hurricanes and how this data can... (View More) prove essential in helping scientists forecast the amount of precipitation. Students will also learn how the Global Precipitation Measurement (GPM) Mission is enabling scientists to collect new information on hurricanes. The lesson uses the 5E instructional sequence. (View Less)

In this lesson students use climatograms from different U.S. locations to observe patterns in temperature and precipitation. After describing geographical features near these locations, they will use graphs to compare and find patterns in the... (View More) effects that mountains, oceans, elevation, and latitude have on temperature and precipitation. A research activity will then ask students to gather information on temperature and precipitation patterns around the world using the MY NASA DATA Live Access Server and other sources, with the goal of creating their own climatogram. This lesson uses the 5E instructional model. (View Less)

This is an activity about image comparison. Learners will analyze and compare images taken by the Solar Dynamics Observatory. They will match four magnetic solar images, or magnetograms, to their corresponding extreme ultraviolet, or EUV, light... (View More) images by studying solar features in the images. At the end, they will recognize that areas of high magnetic activity on the Sun correspond to extreme solar activity. (View Less)

This is an activity that compares the magnetic field of the Earth to the complex magnetic field of the Sun. Using images of the Earth and Sun that have magnets attached in appropriate orientations, learners will use a handheld magnetic field... (View More) detector to observe the magnetic field of the Earth and compare it to that of the Sun, especially in sunspot areas. For each group of students, this activity requires use of a handheld magnetic field detector, such as a Magnaprobe or a similar device, a bar magnet, and ten small disc magnets. (View Less)

Materials Cost: Over $20 per group of students

This book presents 49 space-related math problems published weekly on the SpaceMath@NASA site during the 2011-2012 academic year. The problems utilize information, imagery, and data from various NASA spacecraft missions that span a variety of math... (View More) skills in pre-algebra and algebra. (View Less)

Students will learn about the Spitzer Infrared Observatory and a recently observed dust ring around Saturn through reading a NASA press release and viewing a NASA video segment. Then students will use scientific notation to perform calculations to... (View More) understand the size, mass, and volume of dust and the new dust ring. Common Core State Standards for Mathematics and English Language Arts are identified. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about NASA's Radiation Belt Storm Probes (RBSP), Earth's van Allen Radiation Belts, and space weather through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will use simple linear functions... (View More) to examine the scale of the radiation belts and the strength of Earth's magnetic field. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about how human activity impacts Earth's climate through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will examine simple mathematical models that predict changes in the Earth system in... (View More) response to human activity. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about the Landsat spacecraft and its study of Earth from space through reading a NASA press release. By viewing a NASA eClips™ video segment, students will see how Landsat monitors conditions in the Chesapeake Bay. Then... (View More) students will use fractions to understand land use on Earth based upon Landsat data. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn more about how the orbit of the International Space Station changes as a result of atmospheric drag through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will read a paragraph describing... (View More) the increases and decreases in the orbit altitude to calculate the final orbit altitude. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)