You are here
Home ›Now showing results 1-10 of 57
In this activity, students create a scale model depicting the vertical distance from Earth’s surface to various features and objects, including Earth’s atmospheric layers, the Van Allen Radiation Belts, and geocentric satellites. Students also... (View More) compare the vertical distances to these features and objects with distances from their classroom to other common points on the ground. Includes background science information; student reading, handouts and worksheet; teacher information; and suggested extensions and adaptations for students with vision impairment. (View Less)
This is an activity associated with activities during Solar Week, a twice-yearly event in March and October during which classrooms are able to interact with scientists studying the Sun. Outside of Solar Week, information, activities, and resources... (View More) are archived and available online at any time. Learners will use SOHO spacecraft images of a coronal mass ejection and tracing paper to measure and then calculate the speed of the coronal mass ejection. This activity is scheduled to occur during Wednesday of Solar Week. (View Less)
This is a lesson about the solar wind, Earth's magnetosphere, and the Moon. Participants will work in groups of two or three to build a model of the Sun-Earth-Moon system. They will use the model to demonstrate that the Earth is protected from... (View More) particles streaming out of the Sun, called the solar wind, by a magnetic shield called the magnetosphere, and that the Moon is periodically protected from these particles as it moves in its orbit around the Earth. Participants will also learn that the NASA ARTEMIS mission is a pair of satellites orbiting the Moon that measure the intensity of solar particles streaming from the Sun. (View Less)
In this lesson, learners will research facts about Atlas V rockets, which launched the MMS satellites. After, they will compute the speed of the launch rocket, given a data chart of time vs. distance from lift-off. Then, they will write a report... (View More) synthesizing their researched information. This lesson requires student access to internet accessible computers. This is lesson two of the MMS Mission Educator's Instructional Guide, which uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
This is an activity about image comparison. Learners will analyze and compare images taken by the Solar Dynamics Observatory. They will match four magnetic solar images, or magnetograms, to their corresponding extreme ultraviolet, or EUV, light... (View More) images by studying solar features in the images. At the end, they will recognize that areas of high magnetic activity on the Sun correspond to extreme solar activity. (View Less)
This is an activity that compares the magnetic field of the Earth to the complex magnetic field of the Sun. Using images of the Earth and Sun that have magnets attached in appropriate orientations, learners will use a handheld magnetic field... (View More) detector to observe the magnetic field of the Earth and compare it to that of the Sun, especially in sunspot areas. For each group of students, this activity requires use of a handheld magnetic field detector, such as a Magnaprobe or a similar device, a bar magnet, and ten small disc magnets. (View Less)
Materials Cost: Over $20 per group of students
This is an activity about image comparison. Learners will analyze and compare two sets of images of the Sun taken by instruments on the Solar Dynamics Observatory spacecraft. With Set 1, they will observe the Sun in both a highly active and a... (View More) minimally active state, and be able to detect active regions and loops on the Sun by comparing the two images. With Set 2, they will identify areas of high magnetic activity on a magnetogram image and recognize that these areas correspond to highly active regions on the Sun. (View Less)
This is an activity about forecasting space weather. Learners will use real-time data from NASA's Solar Dynamics Observatory, or SDO, to identify a variety of solar features and active regions of the Sun, and then will use these observations to... (View More) predict the probability of a space weather event. This activity will require each student or group of students to have a computer with internet access. (View Less)
This is a book about the importance of the Sun's energy as it relates to its impact on the Earth’s environment. Learners will read or listen to a story about a young boy, Joshua, who finds out that the Sun provides the Earth with energy in the... (View More) form of light and heat, which is necessary for all forms of life, for maintaining Earth's environment, and for allowing humans to produce their own forms of energy. Additionally, an extension activity is included, Searching for the Sun, where learners can conduct a hands-on experiment observing how plants grow towards sunlight in order to make conclusions about why the Sun’s energy is a necessary component for life. Reading and vocabulary activities are also included. (View Less)
This is a book about seasons. Learners will read or listen to a story about two twins, Matt and Matilda, who are tasked with creating a model of the Earth-Sun system for a science fair project. Through some wild seasonal changes they experience... (View More) while creating the model, the two come to a better understanding of the causes of Earth's seasons. An extension activity is included (Reasons for the Seasons), as well as reading and vocabulary activities. (View Less)