You are here
Home ›Now showing results 1-7 of 7
This is an activity about the Doppler effect. Learners begin by simulating the noise made by a passing siren. After learning that the change in pitch results from movement, they investigate the definition of frequency, calculate change in frequency,... (View More) and learn how this applies to light and the study of astronomy. This lesson requires a Doppler ball, also referred to as a buzzer ball. (View Less)
This is a set of materials about spectroscopy, including a downloadable PowerPoint presentation and two demonstrations or activities. Learners will read and/or hear about the science of spectroscopy, what a spectrum is, and how spectroscopy is... (View More) important to the study of our Sun. These resources can also accompany the Stanford Solar Center's Build Your Own Spectroscope activity. (View Less)
This is a lesson about the formation of plasma bubbles in Earth's ionosphere. Plasma bubbles cause stars to twinkle and radio signals from satellites to distort. Learners will build a model ionosphere in order to demonstrate and understand this... (View More) process. This activity requires special materials including a laser pointer and silicon-based glue. (View Less)
This is a lesson to demonstrate magnetic field lines in 2- and 3-dimensions. In the first activity, learners sprinkle iron filings over a magnet underneath a paper and record their observations. The second activity involves building a 3-D magnetic... (View More) field visualizer using a clear plastic bottle, a cow magnet and iron filings. This is the second lesson in the first session of the "Exploring Magnetism" teacher guide. (View Less)
This is lesson to begin learners' thinking about magnetic influence. Learners will watch a classroom demonstration about the effect of magnets on iron filings and then complete a journal assignment to record their reactions and thoughts. This is the... (View More) first activity in the Mapping Magnetic Influence educators guide. (View Less)
This is an activity about wavelength and frequency. Using a 30 to 50 foot rope and two volunteers, learners will observe as one end of the rope is shaken and wavelength patterns are created. They will estimate the wavelength, the distance between... (View More) two similar points of a wave, such as peak-to-peak, and the frequency of the waves, the number of waves reaching the far end of the rope per second. Through group discussion afterwards, this information is then related electromagnetic spectrum. This activity requires a long length of rope and a large enough space for the entire group to see the whole rope at once. This activity is from the Stanford Solar Center's All About the Sun: Sun and Stars activity guide for Grades 5-8 and can also accompany the Stanford Solar Center's Build Your Own Spectroscope activity. (View Less)
This is an activity about the size and scale of the Sun-Earth system. Learners will take an imaginary trip to the Sun by comparing images of the Sun and Earth at different points in altitude above the Earth. This is to ultimately conceptualize the... (View More) spherical shape of the Earth, which is key to understanding the cause of the seasons. They will then produce a scale model of the Sun and Earth to reinforce the idea that the distance to the Sun is enormous compared with the size of the Earth. Finally, learners reflect on Question 3 of the Sun-Earth Survey, which is the prior activity in this set. This is Activity 3 in the Great Explorations in Math and Science (GEMS) guide titled Real Reasons for Seasons: Sun-Earth Connections. An additional related activity, entitled Scale Models of the Earth-Moon System and the Solar System, is included in the CD-ROM enclosed with the resource guide. The resource guide is available for purchase from the Lawrence Hall of Science. This activity recommends use of an overhead projector, and requires use of a small scale model toy, such as a car or any other toy made to scale, and a rigid globe or large ball like a soccer ball or basketball. (View Less)