## You are here

Home ›Now showing results **1-10** of **16**

This lesson plan uses the 5E learning cycle and is designed around an essential question: How do I know when I’ve found important information in my reading? Learning objectives include: identify important details in informational texts; learn and... (View More) or review summarizing skills, work collaboratively to locate important information about Mars such as terrain, climate, and atmosphere; understand the rationale and importance of note-taking; develop effective note-taking strategies; and apply note-taking skills to record key information in students’ science notebooks. The lesson plan has a number of appendices, including standards alignment. This is Lesson 4 of the middle school version of the 6-week Mars Rover Celebration curriculum. (View Less)

Each lesson or activity in this toolkit is related to NASA's Lunar Reconnaissance Orbiter (LRO). The toolkit is designed so that each lesson can be done independently, or combined and taught in a sequence. The Teacher Implementation Guide provides... (View More) recommendations for combining the lessons into three main strands: 1) Lunar Exploration. These lessons provide a basic introduction to Moon exploration. Note that this strand is also appropriate for use in social studies classes. 2) Mapping the Moon. These lessons provide a more in-depth understanding of Moon exploration through the use of scientific data and student inquiry. The lessons also include many connections to Earth science and geology. 3) Tools of Investigation. These higher-level lessons examine the role of technology, engineering and physics in collecting and analyzing data. (View Less)

Become a crime scene investigator! Learners model Dawn Mission scientists, engineers, and technologists and how they use instrumentation to detect distant worlds. After a briefing to build context, students explore interactions between different... (View More) frequencies/wavelengths of the electromagnetic spectrum and matter as they investigate the different ways scientists gather and understand remote sensing data, using Dawn instruments as examples. This module is organized around a learning cycle, engaging students through several experiences to activate students' prior knowledge and assess conceptual understanding, informing next steps. (View Less)

This is an activity about spacecraft design. Teams of learners will model how scientists and engineers design and build spacecraft to collect, store, and transmit data to earth. Teams will design a system to store and transmit topographic data of... (View More) the Moon and then analyze that data and compare it to data collected by the Lunar Reconnaissance Orbiter . (View Less)

This collection of 160 math problems covers the 20 science topic themes presented by the NASA/JPL Year of the Solar System (YOSS) website, covering the solar system, planets, the search for life, and robotics. Examples of topics included are: scale... (View More) of the solar system; asteroids; comets; moons and rings; volcanism in the solar system; ice in the solar system; water in the solar system; the Sun, transits and eclipses; astrobiology; magnetosphers and more. It is intended as a mathematics supplement for the science content presented at the YOSS website, and features grade-appropriate and Common Core State Standards-based math problems based on science content for grades 3-12. (View Less)

This is a lesson about generating hypotheses and testable questions. Learners will use critical thinking and a collaborative approach to pose questions related to the study of Mars and evaluate the quality of their questions. They will explore... (View More) remote-sensing data collected by a camera orbiting Mars - the Thermal Emission Imaging System (THEMIS) and develop a team science question. Students will practice critical thinking skills, use a collaborative approach to this first critical step of the scientific process. Exploring the images of the surface of Mars in Visible (VIS) images, students will come up with a topic of study, their team science question and hypotheses. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. (View Less)

This is a set of one-page problems about the size and area of solar panels used to generate power. Learners will calculate area fractions to compare the sizes and distances of Jupiter's moons. Options are presented so that students may learn about... (View More) the Juno mission through a NASA press release or about how solar energy is used by various NASA satellites and technology by viewing a NASA eClips™ video [3 min]. Common Core State Standards for Mathematics and English Language Arts are identified. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school. (View Less)

This is a set of one-page problems about the sizes of moons in the solar system. Learners will use decimals to compare the sizes and distances of Saturn's moons to the center of Saturn. Options are presented so that students may learn about the... (View More) Cassini mission through a NASA press release or by viewing a NASA eClips™ video [4 min.] about these and other moons in our solar system. Common Core State Standards for Mathematics and English Language Arts are identified. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school. (View Less)

This book contains 24 illustrated math problem sets based on a weekly series of space science problems. Each set of problems is contained on one page. The problems were created to be authentic glimpses of modern science and engineering issues, often... (View More) involving actual research data. Learners will use mathematics to explore problems that include basic scales and proportions, fractions, scientific notation, algebra, and geometry. (View Less)

This is a lesson about planetary atmospheres. Learners will interpret real spectral graphs from missions to determine what some of Earth, Venus, and Mars’ atmosphere is composed of and then mathematically compare the amount of the greenhouse gas,... (View More) CO2, on the planets Venus, Earth, and Mars in order to determine which has the most. Students brainstorm to figure out what things, along with greenhouse gases, can affect a planet’s temperature. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)