You are here
Home ›Now showing results 1-10 of 10
Learners model how impacts throughout the Moon's history have broken rocks down into a mixture of dust, rocks, and boulders that covers the lunar surface. They consider how the dust will continue to hold a record of human exploration - in the form... (View More) of astronaut bootprints - for countless years in the future. Children may examine a type of Earth soil ("lunar soil simulant") that is similar to what is found on the Moon's surface and that would have been shaped by the processes explored here. The children create their own records of exploration by making rubbings of their shoes. This activity is part of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)
This is a lesson about determining planetary composition. Learners will use a reflectometer to determine which minerals are present (from a set of knowns) in a sample of Mars soil simulant. Requires the use of ALTA II spectrometers (which may be... (View More) borrowed from the Lunar and Planetary Institute or purchased online) and Mars soil simulant. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will use a spectrograph to gather data about light sources. Using the data they’ve collected, students are able to make comparisons between different light sources and make conjectures about the composition of a mystery light source. The... (View More) activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will look at various light sources (including glow sticks and Christmas lights) and make conjectures about their composition. The activity is part of Project Spectra, a science and engineering program for middle-high school students,... (View More) focusing on how light is used to explore the Solar System. (View Less)
This is an activity about seasons. Learners begin by brainstorming a list of activities and events that occur in each season. Next, learners perform an experiment by comparing the temperature on thermometers left under a lamp for different lengths... (View More) of time to illustrate that Earth heats more when the Sun is in the sky longer. (View Less)
This is an activity about the measurement of time. Learners model the rotation of Earth over one day by holding a flashlight for the Sun and a blow up globe, and record their observations. Then, they use those observations to create devices that... (View More) will track time and test their devices outside. This final part of this activity requires access to a sunny outdoor location for an extended period of time so learners can test their time measurement devices. (View Less)
This is an activity about magnetic induction. Learners will induce a flow of electricity in a wire using a moving bar magnet and measure this flow using a galvanometer, or Am meter. Through discussion, this activity can then be related to magnetic... (View More) fields in nature. This activity requires use of a galvanometer, bar or cow magnet, and wire. This is the fifth lesson in the second session of the Exploring Magnetism teacher guide. (View Less)
This is a design challenge about heat transfer and insulation. Learners will apply the scientific method to design and build a container that will keep items cool when placed in boiling water. They will practice collaboration in team-building and in... (View More) teamwork. This is lesson 4 of 4 at the Grade 9-12 range of the module, Staying Cool. (View Less)
This is a lesson about infrared radiation. Learners will investigate invisible forms of light as they conduct William Herschel's experiment and subsequent discovery of infrared radiation. They will construct a device to measure the presence of... (View More) infrared radiation in sunlight, explain that visible light is only part of the electromagnetic spectrum of radiation emitted by the Sun, follow the path taken by Herschel through scientific discovery, explain why we would want to use infrared radiation to study Mercury and other planets, and explain how excess infrared radiation is a concern for the MESSENGER mission. This is activity 1 of 4 at the Grade 5-8 band of "Staying Cool." (View Less)
In this activity, students perform a version of the experiment of 1801, in which ultraviolet light was first discovered by Johann Wilhelm Ritter. This experiment should be conducted outdoors on a sunny day - variable cloud conditions, such as patchy... (View More) cumulus clouds or heavy haze will diminish your results. This activity requires advance preparation and special materials (e.g., glass prism, blueprint paper, household ammonia). (View Less)