You are here
Home ›Now showing results 1-10 of 64
During this immersive virtual field trip to the Grand Canyon, learners investigate geologic records to discover what the rocks reveal about life and environments of the past. They will then apply those same investigative techniques to the search for... (View More) life in the solar system. Educator resources include a 5E instructional lesson and alignments with Next Generation Science Standards (NGSS); the NRC Framework for K-12 Science Education; Common Core State Standards for English Language Arts; and A Framework for 21st Century Learning. This resource is part of the Infiniscope space exploration experiences. (View Less)
Beginning with an online interactive exploration of Karijini Gorge in Australia and Oak Creek Canyon in Sedona, AZ, learners gather geologic evidence regarding the formation of the red rocks found in each. They then apply that information to support... (View More) a hypothesis as to why the rocks on Mars are red. Educator resources include a 5E instructional lesson and alignments with Next Generation Science Standards (NGSS); the NRC Framework for K-12 Science Education; Common Core State Standards for English Language Arts; and A Framework for 21st Century Learning. This resource is part of the Infiniscope space exploration experiences. (View Less)
Unit two of the "Carbon Connections: The Carbon Cycle and the Science of Climate" curriculum examines the role of carbon and the carbon cycle in current climate. Students discover how carbon in Earth's system is monitored and also investigate the... (View More) roles of photosynthesis, cellular respiration, and humans in the carbon cycle and climate. The unit contains five lessons entitled: Moving Carbon, Exploring Limits, The Breathing Biosphere, Carbon Cycling, and Earth Takes a Breath. Each of the five lessons includes focus questions, hands-on activities, virtual field trips, and interactive models. (View Less)
Unit one of the "Carbon Connections: The Carbon Cycle and the Science of Climate" curriculum introduces the role of carbon (as carbon dioxide) as an atmospheric indicator. Students examine the impact of geologic and climatic history on current... (View More) climate by using computer models, measurements and the geologic record of past climate indicators. The unit contains five lessons entitled: Carbon Fizz, Carbon from the Past, Carbon Forcing, Global Connections, and Core Connections. Each of the five lessons includes focus questions, hands-on activities, virtual field trips, and interactive models. (View Less)
Unit three of the "Carbon Connections: The Carbon Cycle and the Science of Climate" curriculum examines the role of carbon and the carbon cycle in future climate. Students discover how scientists determine Earth's average temperature and the role of... (View More) climate models in understanding the size of some forcings on temperature. Students are challenged to reduce their electrical energy usage and to critically evaluate claims about carbon and climate. The unit contains five lessons entitled: Your Temperature Connections, Testing Forcings, Future Forcings, It Starts at Home, and Climate Claims. Each of the five lessons includes focus questions, hands-on activities, virtual field trips, and interactive models. (View Less)
This program uses NASA data and resources to promote authentic classroom research experiences. These two complementary guides lead students through the process of conducting their own inquiry-based research on an Earth-focused topic. In their... (View More) guidebook, students read content and answer questions about each step in the research process- from formulating a question to sharing results. The separate guide for teachers provides explicit instructions, lists the standards addressed, and includes additional hints, resources and websites. (View Less)
Students are introduced to planetary rocks, soils, and surfaces using images of the lunar samples collected by Apollo astronauts. Examining those images and participating in related activities will lead students to a deeper understanding of the... (View More) Moon, Earth and our Solar System. The 27-page student guide contains background information, images, instructions, questions and activities. The lesson models scientific inquiry using the 5E instructional model and also includes a teacher’s guide, an alignment to Next Generation Science Standards (NGSS), and connections to Common Core English Language standards. (View Less)
Materials Cost: $1 - $5 per group of students
Learners will take and then compare the images taken by a camera - to learn about focal length (and its effects on field of view), resolution, and ultimately how cameras take close-up pictures of far away objects. Finally, they will apply this... (View More) knowledge to the images of comet Tempel 1 taken by two different spacecraft with three different cameras, in this case Deep Impact and those expected/obtained from Stardust-NExT. This lesson could easily be adapted for use with images from other NASA missions. (View Less)
This is a lesson about detecting atmospheres of planets. Learners will explore stellar occultation events (by interpreting light curves) to determine if an imaginary dwarf planet "Snorkzat" has an atmosphere. The activity is part of Project Spectra,... (View More) a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Math skills are applied throughout this investigation of windows. Starting with basic window shapes, students determine area and complete a cost analysis, then do the same for windows of unconventional shapes. Students will examine photographs taken... (View More) by astronauts through windows on the Space Shuttle and International Space Station to explore the inverse relationship between lens size and area covered. This lesson is part of the Expedition Earth and Beyond Education Program. (View Less)