## You are here

Home ›Now showing results **1-10** of **13**

Students will learn about NASA's Radiation Belt Storm Probes (RBSP), Earth's van Allen Radiation Belts, and space weather through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will use simple linear functions... (View More) to examine the scale of the radiation belts and the strength of Earth's magnetic field. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about the twin STEREO spacecraft and how they are being used to track solar storms through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will examine data to learn more about the frequency... (View More) and speed of solar storms traveling from the Sun to Earth. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about the Transit of Venus through reading a NASA press release and viewing a NASA eClips™ video that describes several ways to observe transits. Then students will study angular measurement by learning about parallax and how... (View More) astronomers use this geometric effect to determine the distance to Venus during a Transit of Venus. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

During the last sunspot cycle between 1996-2008, over 21,000 flares and 13,000 clouds of plasma exploded from the Sun's magnetically active surface. Students will learn more about space weather through reading a NASA press release and viewing a NASA... (View More) eClips™ video segment. Then students will explore the statistics of various types of space weather storms by determining the mean, median and mode of different samples of storm events. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

During the last sunspot cycle between 1996-2008, over 21,000 flares and 13,000 clouds of plasma exploded from the Sun's magnetically active surface. These events create space weather. Students will learn more about space weather and how it affects... (View More) Earth through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will explore the statistics of various types of space weather storms by determining the mean, median and mode of a sample of storm events. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

This is an activity about the period of the Sun’s rotation. Learners will select images of the Sun from the SOHO spacecraft image archive. Next, they will calculate an image scale for the selected solar images. Then, they will use it to help... (View More) determine the actual speed of sunspots based on measurements of their motion in the selected Sun images and, finally, determine the period of the Sun's rotation. This activity requires access to the internet to obtain images from the SOHO image archive. This is Activity 3 of the Space Weather Forecast curriculum. (View Less)

This is an activity about cause and effect. Learners will investigate various online sources to find data and other pertinent information regarding reported effects on Earth for the solar events they identified in the previous activities in this... (View More) curriculum set. Then, they will summarize their findings for this activity as part of the overall Space Weather project. This is Activity 13 of the Space Weather Forecast curriculum. (View Less)

This is an activity about cause and effect. Learners will calculate the approximate travel time of each solar wind event identified in the previous activity in this set to estimate the time at which the disturbance would have left the Sun. Then,... (View More) they will examine solar images in an attempt to identify the event on the Sun that may have caused the specific solar wind episode. This is Activity 12 of the Space Weather Forecast curriculum. (View Less)

This is an activity about searching online data archives for solar wind events. Learners will find at least three episodes of increased solar wind activity impacting Earth using direct measurements of solar wind velocity and density. Then, they will... (View More) characterize each events by its rise time, the time it takes for the solar wind speed to rise from normal levels to the peak speed of the event, and the percentage increase in solar wind velocity. This is Activity 11 of the Space Weather Forecast curriculum. (View Less)

This is an activity about the period of the Sun's rotation. Learners will use image of the Sun from the SOHO spacecraft and a transparent latitude/ longitude grid called a Stonyhurst Disk to track the motion of sunspots in terms of degrees of... (View More) longitude. Using this angular motion measurement, learners will then calculate the sunspot’s angular velocity in order to determine the rotation period of the Sun. This activity requires access to the internet to obtain images from the SOHO image archive. This is Activity 4 of the Space Weather Forecast curriculum. (View Less)