You are here
Home ›Narrow Search
Now showing results 1-10 of 16
The four lessons in this unit build toward a student understanding of each component of the energy budget formula - and how the contribution of each component changes due to location and time of year. In order, the four lessons consist of: deriving... (View More) the formula for Earth’s energy budget, analyzing data from NASA’s CERES instrument, learning to code using the RStudio program, and using RStudio to explore and evaluate the energy budgets of specific locations and seasons. The unit includes a pre/post test; each lesson follows the 5E model and contains worksheets with answer keys. (View Less)
Through the use of rhythm patterns of sounds presented in a solar system model, learners will collect data to determine orbital periods. Then, using that data, they will derive Kepler’s Third Law (the relationship between the distance of planets... (View More) from the sun and their orbital periods) and apply the equation to search for exoplanets in orbit around extrasolar systems. Educator resources include a 5E instructional lesson and alignments with Next Generation Science Standards (NGSS): ESS1.B: Earth and the Solar System. This resource is part of the Infiniscope space exploration experiences. (View Less)
This series of laboratory lessons and activities uses authentic solar imagery and data to introduce students to solar science. Students are asked to explore details in imagery, including how to deal with the issues of noise and resolution, and... (View More) understand scale. They are introduced to the concept of space weather and how that affects both observing instruments and the Earth. Students learn about spectra, how helium and coronium were discovered, and go on to explore real spectra from the Sun. Most activities are mathematically based, and targeted for grades 9-10. Imagery is included from NASA/ESA's SOHO mission, NASA's SDO mission, and Japan's Hinode satellite. (View Less)
Balloons are used to construct a scale model of the Earth, Earth's Moon and Mars in relation to each other. Students use this model to predict distances and reflect on how scientists use models to construct explanations through the scientific... (View More) process. The lesson is part of the Mars Education Program series; it models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. (View Less)
This is a math-science integrated unit about spectrographs. Learners will find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, the students will build their... (View More) own spectrographs in groups and research and design a ground or space-based mission using their creation. After the project is complete, student groups will present to the class on their trials, tribulations, and findings during this process. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
This is an activity about detecting elements by using light. Learners will develop and apply methods to identify and interpret patterns to the identification of fingerprints. They look at fingerprints of their classmates, snowflakes, and finally... (View More) "spectral fingerprints" of elements. They learn to identify each image as unique, yet part of a group containing recognizable similarities. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
This is a lesson about the science supporting the design and operation of an ion propulsion engine. Learners will study the concepts of formation and discharge of charged particles, attractive and repulsive forces between charged particles, and the... (View More) properties of ions in the plasma phase. The lesson may or may not be completed on-line. This is activity 2 of 5 in Structure and Properties of Matter: Ion Propulsion. (View Less)
This is a lesson about the path of one xenon ion through an ion propulsion engine. Learners will focus on what a single xenon ion sees and does as it goes through the reactions and processes that provide the ion jet propulsion engine's thrust. They... (View More) will learn to adopt an informed, experimental method for use in a later lesson. A tightly-scripted slide-by-slide presentation is provided. Preconceptions are discussed. This is activity 4 of 5 in Structure and Properties of Matter: Ion Propulsion. (View Less)
Learners will study the essential components and variables of an ion propulsion system. Activities include an on-line ion propulsion engine simulation and design. Included are changes in energy and fuel consumption as a result of variable changes... (View More) (dependent/independent variable relationships). This is activity 5 of 5 in Structure and Properties of Matter: Ion Propulsion. (View Less)
Learners will design and conduct experiments to answer the question, "how does distance and inclination affect the amount of heat received from a heat source?" They will measure heat change as a function of distance or viewing angle. From that... (View More) experiment, they will identify how the MESSENGER mission to Mercury takes advantage of these passive cooling methods to keep the spacecraft comfortable in a high-temperature environment. This is lesson 3 from MESSENGER Education Module: Staying Cool. Note: the student guide starts on p. 24 of the PDF. (View Less)