## You are here

Home ›## Narrow Search

**Earth and space science**

**Earth, moon and sun**

**Mathematics**

Now showing results **11-20** of **22**

This is an online set of information about astronomical alignments of ancient structures and buildings. Learners will read background information about the alignments to the Sun in such structures as the Great Pyramid, Chichen Itza, and others.... (View More) Next, the site contains 10 short problem sets that involve a variety of math skills, including determining the scale of a photo, measuring and drawing angles, plotting data on a graph, and creating an equation to match a set of data. Each set of problems is contained on one page and all of the sets utilize real-world problems relating to astronomical alignments of ancient structures. Each problem set is flexible and can be used on its own, together with other sets, or together with related lessons and materials selected by the educator. This was originally included as a folder insert for the 2010 Sun-Earth Day. (View Less)

Learners will be introduced to the concepts of error analysis, including standard deviation. They will apply the knowledge of averages (means), standard deviation from the mean, and error analysis to their own classroom distribution of heights. They... (View More) will then apply this knowledge to data from the Student Dust Counter (SDC) onboard the New Horizons mission to determine the issues associated with taking data, including error and noise. **Note:** Updated links to the Student Dust Counter Data Viewer and website are provided under Related & Supplemental Resources (right). (View Less)

This is a building-wide enrichment program consisting of a series of posters and accompanying questions designed to pique student interest in science concepts and their application to the world in which we live. Accompanying each poster is a series... (View More) of question sheets of increasing difficulty levels that students answer and submit at a designated location (collection box, office, etc.). Random prize drawings can be used to recognize/celebrate student participation. The purpose is to expose students to and create school-wide interest about science so students want to "STOP for Science" as displays are changed throughout the year. Although the focus is building-wide, content can be linked to classrooms through use of accompanying teacher resource guides. The website includes several resources for program facilitators, including posters, answer sheets, podcasts, implementation guide and webinars for facilitators. The program targets grades 3-6 for independent use, but can be used with grades K-2 with adult or upper grade level assistance. Each poster in the series stands alone and is not tied to concepts in other posters. Therefore, posters can be displayed in any sequence desired. (View Less)

This is a booklet containing 37 space science mathematical problems, several of which use authentic science data. The problems involve math skills such as unit conversions, geometry, trigonometry, algebra, graph analysis, vectors, scientific... (View More) notation, and many others. Learners will use mathematics to explore science topics related to Earth's magnetic field, space weather, the Sun, and other related concepts. This booklet can be found on the Space Math@NASA website. (View Less)

This is a booklet containing 87 problem sets that involve a variety of math skills, including scale, geometry, graph analysis, fractions, unit conversions, scientific notation, simple algebra, and calculus. Each set of problems is contained on one... (View More) page. Learners will use mathematics to explore varied space science topics in the areas of Earth science, planetary science, and astrophysics, among many others. This booklet can be found on the Space Math@NASA website. (View Less)

This is a booklet containing 15 problems that incorporate data and information from the Hinode solar observatory. The problems involve math skills such as finding the scale of an image to determine actual physical sizes in images, time calculations,... (View More) volumes of cylinders, graph analysis, and scientific notation. Learners will use mathematics to explore solar science topics such as sunspot structure, spectroscopy, solar rotation, magnetic fields, density and temperature of hot gases, and solar flares. This booklet can be found on the Space Math@NASA website. (View Less)

This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its... (View More) intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide. (View Less)

This is an activity about the movement, or "wandering," of our Earth's magnetic poles. The learner will explore this concept by measuring and calculating the distance the Earth's north magnetic pole has moved over the past 400 years and calculating... (View More) the rate at which the magnetic pole location has changed its position during that time. Finally, learners will use this information to extrapolate how the region for viewing aurorae may change over the next century at the present rate of polar wander. This is Activity 6 in the Exploring Magnetism on Earth teachers guide. (View Less)

This is a booklet containing 24 problem sets that involve a variety of math skills, including scientific notation, simple algebra, and calculus. Each set of problems is contained on one page. Learners will use mathematics to explore varied space... (View More) science topics including solar storms, solar energy, coronal mass ejections, and doppler shift, among others. (View Less)

This is an activity about observing the Sun. Learners will construct a pinhole projector to project an image of the Sun, observe and record the size of the projected image, and calculate the diameter of the Sun using the measurements and a known... (View More) distance to the Sun. This activity is from the Touch the Sun educator guide. (View Less)

Materials Cost: 1 cent - $1 per group of students