You are here
Home ›Narrow Search
Now showing results 1-10 of 47
After reading the accompanying background information, students create an ice core using a tennis ball container and an assortment of dyes and craft supplies. Students measure the thickness and determine the age of each layer. As an extension... (View More) activity, students write a story about their ice core. (View Less)
A collection of nine atmospheric science and geography activities that guide students in developing the skills used to analyze GLOBE environmental data. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on,... (View More) K-12 school-based science education program. (View Less)
Acting as the ICESat-2 satellite, students investigate the reflection of light photons off Earth's surface by catching and recording a number of photons. Using bouncy balls to represent the photons, students drop, let bounce once and try to catch in... (View More) one hand as many balls (photons) as possible. Drops occur on carpeted and non-carpeted areas, and with and without the presence of cardboard buildings, to represent different Earth surfaces. The lesson includes background information, instructions and concluding questions. Related Next Generation Science Standards (NGSS) are listed. (View Less)
This unit consists of five activities, all of which focus on the response of plant life-cycle events to climate change. Students participate in discussions, field observations, data collection and analyses, plant identification, seed dispersal... (View More) comparisons, and graphing and analyses of plant phenology (timing of life-cycle events). Project BudBurst, a citizen science project which studies the impact of climate change on phenology, is integrated into this unit. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This unit consists of four activities. Students begin by examining temperature cycles (current, recent and historical) then add in factors such as carbon dioxide, precipitation and cloud cover to discover regional and global differences in the... (View More) effects of climate change. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This unit consists of two parts, each with several activities which require students to participate in investigations, discussions, computer data analysis, role-playing, and research. In Part 1, students examine the roles of Earth's energy balance... (View More) and the greenhouse effect in creating and affecting climate. Part 2 focuses on the biosphere as a system. Students examine the interactions of organisms, the effects of climate change on food webs, and the importance to humans of a healthy, intact ecosystem. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This lesson plan teaches how to select the landing site for a planetary surface investigation, using the 5E learning cycle. Students will be able to determine a landing site for their Mars rover; work with their team to summarize information and... (View More) identify important details in non-fiction writing; research Gale Crater through an online interactive module; use Google Earth Mars to learn about Mars surface features; gather and analyze data to conduct a scientific experiment; collect and record data in a science notebook to draw logical and scientific conclusions; define and identify the role of controls and variables in teams' scientific or technical questions; and differentiate between weather and climate. The lesson plan has a number of appendices, including standards alignment. This is Lesson 8 of the elementary school version of the 6 week Mars Rover Celebration curriculum. (View Less)
Using the 5E instructional model, students discover the value of using color maps to visualize data. The activity requires students to create a color map of the ozone hole from Dobson data values derived from the Aura satellite. Students then... (View More) interpret that map and compare and evaluate different color scales. Note that this is the Spanish version of Exploring Color Maps: Using Stratospheric Ozone Data. (View Less)
Through the use of the 5E instructional model, students discover the value of using color maps to visualize data. The activity requires students to create a color map of the ozone hole from Dobson data values derived from the Aura satellite.... (View More) Students then interpret that map and compare and evaluate different color scales. (View Less)
Students will explore how energy from the sun is absorbed, reflected and radiated back into space by Earth. By completing three short labs investigating the effects of surface color, type of material, or cloud cover on temperature change, students... (View More) will begin to consider how various surfaces might affect Earth's overall temperature. Earth's energy budget will then be explored through a video, simulation activity, and an interactive animation. This lesson uses the 5E instructional model. All background information, student worksheets and images/photographs/data are included in these downloadable sections: Teacher’s Guide, Student Capture Sheet, PowerPoint Presentation and three lab sheets. (View Less)