You are here
Home ›Narrow Search
Now showing results 1-10 of 15
This lesson plan teaches how to select the landing site for a planetary surface investigation, using the 5E learning cycle. Students will be able to determine a landing site for their Mars rover; work with their team to summarize information and... (View More) identify important details in non-fiction writing; research Gale Crater through an online interactive module; use Google Earth Mars to learn about Mars surface features; gather and analyze data to conduct a scientific experiment; collect and record data in a science notebook to draw logical and scientific conclusions; define and identify the role of controls and variables in teams' scientific or technical questions; and differentiate between weather and climate. The lesson plan has a number of appendices, including standards alignment. This is Lesson 8 of the elementary school version of the 6 week Mars Rover Celebration curriculum. (View Less)
Students work in groups to investigate one of the following factors driving climate change: greenhouse gases, sea level rise and melting sea ice. The investigation involves conducting an experiment, connecting to real-world data and presenting a... (View More) poster summary of their findings. The lesson includes experiment procedures (with pictures), a rubric for poster evaluation, a Powerpoint presentation (incorporating NASA videos), extensions, and additional resources. (View Less)
Learners work in teams to determine a landing site for their Mars Rover that best relates to their scientific question. They use technology skills to research Gale Crater through an online interactive module and learn about features of Mars through... (View More) use of Google Earth Mars. The lesson uses the 5E instructional model and includes: TEKS (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 8 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
Learners will brainstorm ideas to be developed into a team skit, work cooperatively to assign duties and write a team skit, and collaborate with team members to complete the Mars Rover Manual. The lesson uses the 5E instructional model and includes:... (View More) TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, the Manual Template, and a presentation writing Mini-Lesson. This is lesson 14 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
Students will use NASA's Global Climate Change website to research five of the key indicators (vital signs) of Earth’s climate health. These indicators are: global surface temperature, carbon dioxide concentrations, sea level, Arctic sea ice, and... (View More) land ice. They will use this information, shared in their expert groups, to create an informative poster about their assigned key indicator. The poster will be used by other groups to learn about all five of the key indicators and how Earth scientists use these indicators to analyze changes in Earth’s climate. The lesson plan uses the 5E instructional sequence. (View Less)
This is a math-science integrated unit about spectrographs. Learners will find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, the students will build their... (View More) own spectrographs in groups and research and design a ground or space-based mission using their creation. After the project is complete, student groups will present to the class on their trials, tribulations, and findings during this process. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
This is a lesson about using the light from the star during an occultation event to identify the atmosphere of a planet. Learners will add and subtract light curves (presented as a series of geometrical shapes) to understand how this could occur.... (View More) The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
This is an activity about the Signal-to-Noise Ratio. Learners will engage with a hands-on activity and an online interactive to understand the terms signal and noise as they relate to spacecraft communication; quantify noise using a given dataset;... (View More) and calculate the signal-to-noise ratio. The activity also includes a pencil-and-paper component that addresses relevant topics, such as proportions and ratios. Includes teacher background information, student data sheets, answer guide, extensions and adaptions. (View Less)
This is an activity about detecting elements by using light. Learners will develop and apply methods to identify and interpret patterns to the identification of fingerprints. They look at fingerprints of their classmates, snowflakes, and finally... (View More) "spectral fingerprints" of elements. They learn to identify each image as unique, yet part of a group containing recognizable similarities. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
In this lesson, students measure the size of several galaxies to reproduce a plot of Hubble's Law. The goal of this lesson is to give students the chance to simulate the process that led to the notion that the universe is expanding, provide insight... (View More) into how this idea was reached, and inform students about the nature of our universe.Includes an extension activity, "Hubble's Law Mis-calibration." This lesson is part of the Cosmic Times teacher's guide and is intended to be used in conjunction with the 1929 Cosmic Times Poster. (View Less)