You are here
Home ›Narrow Search
Now showing results 1-3 of 3
Learners will construct a mock-up of a planetary surface rover. They begin by exploring the importance of engineering in our society, and work as a team to build a prototype of the team's rover using student science notebooks and team sketches as a... (View More) guide. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 13 of the Mars Rover Celebration Unit, a six-week curriculum. (View Less)
This is an activity about mission planning. Learners will use the roles of a navigation team, spacecraft, comet, Earth, and Sun to simulate how mission planners design a spacecraft/comet rendezvous. This activity requires at least four active... (View More) participants and a large open space. Includes mathematics extensions. (View Less)
In this activity, students will learn how technology can help scientists solve a problem. One of the challenges scientists face with any spacecraft is attitude control. Students will be introduced to the problem of attitude control in space through... (View More) an experiment using angular momentum, and experience two different ways scientists address this problem. Students begin by discussing the technology(ies) that powers satellites and enable(s) them to move through space. Students then engage in an angular momentum experiment. Estimated cost of this activity does not include the cost of the bicycle wheel for the angular momentum experiment. This activity is one of several in the Swift: Eyes through Time collection available on the Teachers' Domain website. (View Less)