You are here
Home ›Narrow Search
Now showing results 1-10 of 78
This unit consists of five activities, all of which focus on the response of plant life-cycle events to climate change. Students participate in discussions, field observations, data collection and analyses, plant identification, seed dispersal... (View More) comparisons, and graphing and analyses of plant phenology (timing of life-cycle events). Project BudBurst, a citizen science project which studies the impact of climate change on phenology, is integrated into this unit. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This curriculum uses an inquiry-based Earth system science approach, and leverages Project BudBurst, a citizen science phenology project, to engage students in authentic research on plant and ecosystem responses to climate change. Students collect... (View More) local data then analyze that data in the context of NASA regional and global data sets and satellite imagery to understand their data in personal, regional, and global contexts. The curriculum is divided into four units: The Earth as a System; Identifying the key changing conditions of the Earth system; Earth system responses to natural and human induced changes; and Predicting the consequences of changes for human civilization. Each unit consists of several activities with accompanying teacher answer sheets. (View Less)
Materials Cost: $1 - $5 per group of students
This curriculum uses an inquiry-based Earth system science approach, and leverages Project BudBurst, a citizen science phenology project, to engage students in authentic research on plant and ecosystem responses to climate change. Students collect... (View More) local data then analyze that data in the context of NASA regional and global data sets and satellite imagery to understand their data in personal, regional, and global contexts. The curriculum is divided into four units: The Earth as a System; Identifying the key changing conditions of the Earth system; Earth system responses to natural and human induced changes; and Predicting the consequences of changes for human civilization. Each unit consists of several activities with accompanying teacher answer sheets. (View Less)
In this unit, students investigate temperature cycles, tree rings, CO2 records, and the effects of CO2 on temperature, precipitation and cloud cover to determine the impacts of changing climate on forests. After gathering and analyzing local data,... (View More) students examine regional impacts and differences. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
This unit focuses on local plant species; students learn to identify common species and will examine their life cycle characteristics as evidence of climate change. Through the use of the national citizen science project titled Project BudBurst,... (View More) students explore the impacts of climate variation on plant species distribution. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
This unit consists of two parts, each with several activities which require students to participate in investigations, discussions, computer data analysis, role-playing, and research. In Part 1, students examine the roles of Earth's energy balance... (View More) and the greenhouse effect in creating and affecting climate. Part 2 focuses on the biosphere as a system. Students examine the interactions of organisms, the effects of climate change on food webs, and the importance to humans of a healthy, intact ecosystem. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This is an annotated, topical list of science fiction novels and stories based on more or less accurate astronomy and physics ideas. Learners can read fictional works that involve asteroids, astronomers, black holes, comets, space travel where... (View More) Einstein's ideas are used correctly, exploding stars, etc. (View Less)
This activity demonstrates optical properties of water: that different constituents in water affect the transmission, absorption, and scattering of different colors in the visible light spectrum. Inexpensive, off-the-shelf components are used to... (View More) build a light sensor and source, creating a simple spectrophotometer that can measure light absorption. In the second part of this activity, principles of ocean color remote sensing are applied to measure reflectance. Using components that are clearly visible allows students to configure them in different ways. Playing with the instrument design gives students a practical understanding of spectrophotometers, in-water optics, and remote sensing. As an extension of this concept, students are encouraged to think about how ocean color is used to estimate the concentration of chlorophyll to infer phytoplankton abundance, colored dissolved organic matter, and suspended sediments. (View Less)
Emphasizing the synergies between science and engineering, these video clips highlight the research of professional ocean scientists and engineers in various disciplines. The clips are accompanied by additional relevant content including images,... (View More) data visualizations, graphs, animations, and other information. Content has been organized into more than a dozen thematic areas such as Solving Old Problems with New Technology and Small Scale Observations and Large Scale Ideas. All content has been aligned with science and engineering practices from the Next Generation Science Standards, including "asking questions and solving problems" and "planning and carrying out investigations," providing applicable resources for teachers who want to provide role models of effective practice for their students. (View Less)
Students combine science and systems engineering to develop a mission to search for life in our solar system. The mission must meet budgetary, mass and power constraints while still producing significant science. An extensive set of "equipment... (View More) playing cards" determines all critical mission factors such as mass limit, cost, weight, scientific instruments, mobility, and all systems- including power, computer, communication, instrumentation, mechanical, as well as entry, descent and landing. The equipment cards, a design mat and student worksheets are included. The lesson is part of the Mars Education Program series; it models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. Next Generation Science Standards are listed. (View Less)