## You are here

Home ›## Narrow Search

**Earth and space science**

**Earth structure**

**Earth, moon and sun**

**Physical sciences**

Now showing results **1-10** of **16**

The four lessons in this unit build toward a student understanding of each component of the energy budget formula - and how the contribution of each component changes due to location and time of year. In order, the four lessons consist of: deriving... (View More) the formula for Earth’s energy budget, analyzing data from NASA’s CERES instrument, learning to code using the RStudio program, and using RStudio to explore and evaluate the energy budgets of specific locations and seasons. The unit includes a pre/post test; each lesson follows the 5E model and contains worksheets with answer keys. (View Less)

This collection of 160 math problems covers the 20 science topic themes presented by the NASA/JPL Year of the Solar System (YOSS) website, covering the solar system, planets, the search for life, and robotics. Examples of topics included are: scale... (View More) of the solar system; asteroids; comets; moons and rings; volcanism in the solar system; ice in the solar system; water in the solar system; the Sun, transits and eclipses; astrobiology; magnetosphers and more. It is intended as a mathematics supplement for the science content presented at the YOSS website, and features grade-appropriate and Common Core State Standards-based math problems based on science content for grades 3-12. (View Less)

This is an online set of information about astronomical alignments of ancient structures and buildings. Learners will read background information about the alignments to the Sun in such structures as the Great Pyramid, Chichen Itza, and others.... (View More) Next, the site contains 10 short problem sets that involve a variety of math skills, including determining the scale of a photo, measuring and drawing angles, plotting data on a graph, and creating an equation to match a set of data. Each set of problems is contained on one page and all of the sets utilize real-world problems relating to astronomical alignments of ancient structures. Each problem set is flexible and can be used on its own, together with other sets, or together with related lessons and materials selected by the educator. This was originally included as a folder insert for the 2010 Sun-Earth Day. (View Less)

In this activity, students use mathematics to understand tides and gravitation and how gravity works across astronomical distances, using an apparatus made from a slinky, meter stick, and a hook. A description of the mathematical relationships seen... (View More) in the demonstration is included. The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

In this problem set, learners will compare actual versus computer track of a solar eclipse in Babylonian times to calculate the rate at which the day is lengthening over time. Answer key is provided. This is part of "Earth Math: A Brief Mathematical... (View More) Guide to Earth Science and Climate Change." (View Less)

This activity, effective outdoors or indoors, demonstrates how insolation is affected by latitude by using a pair of thermometers, each taped to some cardboard, placed outside on a sunny day. A globe can also be used, outdoors or indoors. Students... (View More) learn that seasonal variations in temperature are the result of the heating of the Sun as a function of its peak angle and length of the day. A template for a folded paper structure to explore the effects of the angle of illumination on heating is included. The resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This resource complements a planetarium experience. However, the accompanying educator's guide and companion guides - with lessons on observing and investigating the Moon - are available to download for independent classroom use. The hands-on... (View More) activities, which take up where the show leaves off, motivate students to use their cooperative learning skills to design a self-sufficient lunar station. Working in teams, students develop critical thinking skills, problem-solving techniques, and an understanding of complex systems as they discuss solutions to the essential questions they are presented. (View Less)

This web page features a short essay about the equinox solar alignments of the pyramid of Kulkulkan at Chichen Itza. It can be used by educators as background information or as a reading assignment for learners.

This is a resource that explains the rationale behind the multiple time zone divisions in the United States. Learners will work through a problem set to practice calculating the time in one time zone, given the time in another time zone. This is... (View More) activity 9 from the educator guide, Exploring Magnetism: Magnetic Mysteries of the Aurora. (View Less)

This is a lesson plan for an activity that explores time zone math. Learners will translate their local time to times in other zones around the world and work with the concept of Universal Time, specifically in reference to the reporting,... (View More) description and analysis of solar flares and coronal mass ejections. This is activity 10 from Exploring Magnetism Guide 3: Magnetic Mysteries of the Aurora educator guide. (View Less)