You are here
Home ›Narrow Search
Now showing results 1-10 of 31
This unit consists of five activities, all of which focus on the response of plant life-cycle events to climate change. Students participate in discussions, field observations, data collection and analyses, plant identification, seed dispersal... (View More) comparisons, and graphing and analyses of plant phenology (timing of life-cycle events). Project BudBurst, a citizen science project which studies the impact of climate change on phenology, is integrated into this unit. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
This unit focuses on the impacts of climate change on humans. Students participate in activities using "Character Cards" (included with the unit). The cards introduce fictitious citizens who describe the local economic, social and political factors... (View More) that impact their country's climate change issues/responses. A second activity in the unit has students research, discuss and present their findings on the impacts of climate change - first at the global level then narrowed to a country, region and/or state level. In addition, students examine how their own energy and food choices impact climate change and then propose ideas to reduce their carbon footprint. The unit is one of four under the Chicago Botanic Garden curriculum entitled, "Climate Change in My Backyard." (View Less)
Materials Cost: 1 cent - $1 per group of students
In this lesson, students will design a planetary surface rover to conduct a planetary surface investigation. It uses the 5E learning cycle and is designed around an essential question: How will creating a prototype of your rover help you prepare for... (View More) the Mars Rover Celebration? The lesson objectives are to: learn about scientific careers to gain a better understanding of a sampling of careers that have contributed to designing and developing Curiosity; draw a detailed, final-design sketch/diagram of the rover that will be built; identify missions, requirements and features of the rover using labels and captions when necessary. A number of appendices are provided, including standards alignment. This is Lesson 12 of the elementary school version of the 6-week Mars Rover Celebration curriculum. (View Less)
In this lesson, students will design a planetary surface rover to conduct a planetary surface investigation. It uses the 5E learning cycle and is designed around an essential question: How will creating a prototype of your rover help you prepare for... (View More) the Mars Rover Celebration? The lesson objectives are to: learn about scientific careers to gain a better understanding of a sampling of careers that have contributed to designing and developing Curiosity; draw a detailed, final-design sketch/diagram of the rover that will be built; identify missions, requirements and features of the rover using labels and captions when necessary. A number of appendices are provided, including standards alignment. This is Lesson 12 of the middle school version of the 6-week Mars Rover Celebration curriculum. (View Less)
This lesson plan uses the 5E learning cycle and is designed around an essential question: Why is the method you chose for landing your Rover on Mars the best one for your mission? The lesson objectives include: examine different methods for landing... (View More) rovers on Mars; determine which landing strategy is best suited to land the team's rover; research solutions to different problems that may occur once the rover lands on Mars; learn how to write in a persuasive manner; and present a well-written persuasive argument to teammates. The lesson plan has a number of appendices, including standards alignment. This is Lesson 10 of the middle school version of the 6-week Mars Rover Celebration curriculum. (View Less)
This lesson plan uses the 5E learning cycle and is designed around an essential question: How do I know when I’ve found important information in my reading? Learning objectives include: identify important details in informational texts; learn and... (View More) or review summarizing skills, work collaboratively to locate important information about Mars such as terrain, climate, and atmosphere; understand the rationale and importance of note-taking; develop effective note-taking strategies; and apply note-taking skills to record key information in students' science notebooks. The lesson plan has a number of appendices, including standards alignment. This is Lesson 4 of the elementary school version of the 6-week Mars Rover Celebration curriculum. (View Less)
This lesson plan uses the 5E learning cycle and is designed around an essential question: Why is the method you chose for landing your Rover on Mars the best one for your mission? The lesson objectives include: examine different methods for landing... (View More) rovers on Mars; determine which landing strategy is best suited to land the team's rover; research solutions to different problems that may occur once the rover lands on Mars; learn how to write in a persuasive manner; and present a well-written persuasive argument to teammates. The lesson plan has a number of appendices, including standards alignment. This is Lesson 10 of the elementary school version of the 6-week Mars Rover Celebration curriculum. (View Less)
This lesson plan uses the 5E learning cycle and is designed around an essential question: How do I know when I've found important information in my reading? Learning objectives include: identify important details in informational texts; learn and or... (View More) review summarizing skills, work collaboratively to locate important information about Mars such as terrain, climate, and atmosphere; understand the rationale and importance of note-taking; develop effective note-taking strategies; and apply note-taking skills to record key information in students’ science notebooks. The lesson plan has a number of appendices, including standards alignment. This is Lesson 4 of the middle school version of the 6-week Mars Rover Celebration curriculum. (View Less)
This lesson introduces students to Mars' history through research and discussion. Students read about the history of Mars, Mars observing, and exploration with telescopes and robotic spacecraft. After learning about Mars, students consider how some... (View More) aspects of our early understanding of Mars included fictitious ideas not based upon science and discuss the differences between science fiction and science fact. Students will illustrate a scene from Mars history with a paragraph description, and place their work along a clothesline in the classroom to create a timeline. This lesson is from “Red Planet: Read, Write, Explore!” which uses literacy, art, and creative expression as a vehicle for learning about Mars science and exploration. Includes alignment to Common Core State Standards (CCSS) for English Language Arts. (View Less)
This is an activity about the Moon's influence on Earth. Learners think like a scientist - with reasoning skills and a healthy amount of skepticism - to sort puzzle pieces containing statements about the Moon into two images. The "Far-out Far Side"... (View More) has incorrect statements about the Moon (urban myths), and "True-Blue Blue Moon" has true facts about the Moon’s influence on Earth and life. This activity is part of Explore! Marvel Moon, a series of activities developed specifically for use in libraries. (View Less)