You are here
Home ›Narrow Search
Now showing results 1-7 of 7
This is an annotated, topical list of science fiction novels and stories based on more or less accurate astronomy and physics ideas. Learners can read fictional works that involve asteroids, astronomers, black holes, comets, space travel where... (View More) Einstein's ideas are used correctly, exploding stars, etc. (View Less)
This activity demonstrates optical properties of water: that different constituents in water affect the transmission, absorption, and scattering of different colors in the visible light spectrum. Inexpensive, off-the-shelf components are used to... (View More) build a light sensor and source, creating a simple spectrophotometer that can measure light absorption. In the second part of this activity, principles of ocean color remote sensing are applied to measure reflectance. Using components that are clearly visible allows students to configure them in different ways. Playing with the instrument design gives students a practical understanding of spectrophotometers, in-water optics, and remote sensing. As an extension of this concept, students are encouraged to think about how ocean color is used to estimate the concentration of chlorophyll to infer phytoplankton abundance, colored dissolved organic matter, and suspended sediments. (View Less)
This collection of math problems is based on a weekly series of space and Earth science problems distributed to teachers during the 2013-2014 school year. The problems were intended for students looking for additional challenges in the math and... (View More) physical science curriculum and were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. Includes information for teachers and answer key. (View Less)
Emphasizing the synergies between science and engineering, these video clips highlight the research of professional ocean scientists and engineers in various disciplines. The clips are accompanied by additional relevant content including images,... (View More) data visualizations, graphs, animations, and other information. Content has been organized into more than a dozen thematic areas such as Solving Old Problems with New Technology and Small Scale Observations and Large Scale Ideas. All content has been aligned with science and engineering practices from the Next Generation Science Standards, including "asking questions and solving problems" and "planning and carrying out investigations," providing applicable resources for teachers who want to provide role models of effective practice for their students. (View Less)
This short video (4:44) helps audiences understand and appreciate the importance of measuring precipitation globally. The role of the Global Precipitation Measurement (GPM) mission to better understand, model and predict where and when too much... (View More) rainfall will occur (resulting in floods and landslides) and where too little rain will fall (resulting in droughts) is examined. (View Less)
"Build It Yourself: Satellite!" is an online Flash game hosted on the James Webb Space Telescope website. The goal of the game is to explain the decision-making process of satellite design. The user can choose to build a "small," "medium," or... (View More) "large" astronomy satellite. The user then selects science goals, wavelength, instruments, and optics. The satellite is then launched on the appropriate rocket (shown via an animation). Finally, the user is shown what their satellite might look like, as well as what kind of data it might collect, via examples from similar real-life satellites. Satellites range from small X-ray missions without optics (like the Rossi X-ray Timing Explorer) to large missions with segmented mirrors (like the James Webb Space Telescope). (View Less)
This self-paced, interactive tutorial provides learners with an opportunity to learn about remote sensors, and the role remote-sensing instruments play in our understanding of the Earth system. Activities within the tutorial allow learners to... (View More) demonstrate for themselves how atmospheric absorption and the signal-to-noise ratio determine the spectral resolution of a remotely-sensed image. A culminating simulation activity shows learners how engineers must consider design tradeoffs between quality and quantity of data produced. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Principles in Remote Sensing. (Note: requires Java plug-in) (View Less)