You are here
Home ›Narrow Search
Now showing results 1-7 of 7
In this lesson, learners will first watch a video about the orbit and formation of the MMS satellites to learn about their flight configuration. After, they will research similar facts about other types of satellites. Next, learners will compute the... (View More) volume of MMS' tetrahedral flight configuration and investigate how the tetrahedral volume changes as the satellites change positions. Finally, they will create a report that outlines their findings. This activity requires student access to internet accessible computers. This is lesson three in the MMS Mission Educator's Instructional Guide, which uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
In this lesson, learners will first use computers to research and learn how solar panels convert sunlight into electricity. Next, they will calculate the surface area of solar panels board a satellite and their total power generated in various... (View More) positions of the satellite, given the dimension of the panels. After, learners will organize and write a report summarizing the information about the MMS mission satellites. This activity requires student access to internet accessible computers. This is lesson four of the MMS Mission Educator's Instructional Guide, which uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
Students are introduced to planetary rocks, soils, and surfaces using images of the lunar samples collected by Apollo astronauts. Examining those images and participating in related activities will lead students to a deeper understanding of the... (View More) Moon, Earth and our Solar System. The 27-page student guide contains background information, images, instructions, questions and activities. The lesson models scientific inquiry using the 5E instructional model and also includes a teacher’s guide, an alignment to Next Generation Science Standards (NGSS), and connections to Common Core English Language standards. (View Less)
Materials Cost: $1 - $5 per group of students
The 9-session NASA Family Science Night program emables middle school children and their families to discover the wide variety of science, technology, engineering, and mathematics being performed at NASA and in everyday life. Family Science Night... (View More) programs explore various themes on the Sun, the Moon, the Stars, and the Universe through fun, hands-on activities, including at-home experiments. Instructions for obtaining the facilitator's guide are available on the Family Science Night site. (View Less)
This is an activity about detecting elements by using light. Learners will develop and apply methods to identify and interpret patterns to the identification of fingerprints. They look at fingerprints of their classmates, snowflakes, and finally... (View More) "spectral fingerprints" of elements. They learn to identify each image as unique, yet part of a group containing recognizable similarities. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will investigate, compare, and describe patterns in Solar System data. They will then hypothesize about the formation of the Solar System based on data and explain how extrasolar planets can be discovered. In the first activity, the... (View More) students investigate Solar System data to find clues to how our planetary system was formed. By the end of the activity, the students come to understand that other stars form just like the Sun, and, therefore, many stars could have planets around them. The second activity examines how scientists can find these extrasolar planets. By observing the behavior of a model star-planet system, the students come to understand that it is possible to see the effect a planet has on its parent star even if the planet cannot be seen directly. By comparing the properties of our Solar System with other planetary systems, we can gain a deeper understanding of planetary systems across the Universe. Note: The MESSENGER mission to Mercury that is mentioned in this lesson ended operations April 30, 2015. For the latest information about MESSENGER and NASA's solar system missions see the links under Related & Supplemental Resources (right side of this page). (View Less)
This interactive website engages children in a story-based scenario that emphasizes concepts of remote sensing and how NASA scientists use satellite imagery to better understand the Earth's environmental changes. The story features a pigeon named... (View More) Amelia and is set in New York City. Amelia's owner, a young girl named Maria, receives a gift from her grandfather-a camera specially designed for strapping on to a pigeon along with copies of old photographs taken of New York City landmarks. Suddenly, Amelia's flights around the city take on new relevance; she visits the Bronx Zoo, Central Park and Battery Park to take updated pictures of those same landmarks from her "birds-eye" perspective. Through Amelia's adventures, and with some help from a NASA scientist, Maria learns about the history of aerial images, the use of images to detect changes over time, the significance of color, texture and shape in interpreting those images, and the importance of images taken from today's NASA satellites to our understanding of Earth. The story is set in New York City, chosen for its size, diversity and the visibility of prominent features in satellite imagery. (View Less)