You are here
Home ›Narrow Search
Now showing results 1-10 of 23
Invisible Mars is a Science on a Sphere (SOS) and planetarium program that examines the story of water on Mars. NASA’s MAVEN mission (Mars Atmosphere and Volatile Evolution Mission) is providing new information about the atmosphere of Mars and its... (View More) probable role in the disappearance of Martian water. The module also provides information on past, present, and future Mars missions, In addition to the downloadable script and materials to run the program, the site also provides background information, docent/facilitator tips, and image sets comparing water features on Earth and Mars. (View Less)
Using a plastic tray filled with sand to represent a planetary surface, learners simulate the effects of wind, water, and impacts. They will compare the surface effects they create with actual images of planetary surfaces- and determine the causes... (View More) of the features in the images. This activity was designed to be used in a library program. (View Less)
Students analyze and interpret the accompanying large-format images of Mars taken by NASA’s Mars Thermal Emission Imaging System (THEMIS) camera. The analysis involves identifying geologic features, calibrating the size of those features, and... (View More) determining surface history. The lesson culminates in students conducting in-depth research on questions generated during their analyses. The lesson is part of the Mars Education Program series; it models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. (View Less)
This series of learning modules is designed for adaptation in an introductory Earth science or planetary science course. The modules actively engage students through Mars remote-sensing data and Earth-based analogs to understanding Mars geology.... (View More) Interviews with planetary scientists and geologists present current issues in planetary sciences. (View Less)
This lesson plan teaches how to select the landing site for a planetary surface investigation, using the 5E learning cycle. Students will be able to determine a landing site for their Mars rover; work with their team to summarize information and... (View More) identify important details in non-fiction writing; research Gale Crater through an online interactive module; use Google Earth Mars to learn about Mars surface features; gather and analyze data to conduct a scientific experiment; collect and record data in a science notebook to draw logical and scientific conclusions; define and identify the role of controls and variables in teams' scientific or technical questions; and differentiate between weather and climate. The lesson plan has a number of appendices, including standards alignment. This is Lesson 8 of the elementary school version of the 6 week Mars Rover Celebration curriculum. (View Less)
This is an activity about the atmospheric conditions (greenhouse strength, atmospheric thickness) Mars needs to maintain surface water. Learners will use a computer interactive to learn about Mars past and present before exploring the pressure and... (View More) greenhouse strength needed for Mars to have a watery surface as it had in the past. This lesson is part of Project Spectra, a science and engineering education program focusing on how light is used to explore the Solar System. (View Less)
This 12-lesson unit includes inquiry-based lessons about the surface features of the Moon and the Earth and how these two worlds formed and continue to evolve. Students participate in real science as they help lunar scientists map the surface of the... (View More) Moon with MoonMappers, an online citizen science project that lets the public analyze real data from NASA's Lunar Reconnaissance Orbiter. The lessons in this unit follow the 5E instructional model. Includes an overview of citizen science, glossary of lunar feature vocabulary, alignment to NGSS and NSES, and featured links. Each of the lessons addresses different topics and can be used together as a unit, or independently. (View Less)
Learners will investigate how much you can learn about something just by looking at it. In Activity 1, students study aerial photographs to identify geologic features, determine how they differ from one another, and examine the processes involved in... (View More) their formation. In Activity 2, students investigate how remote observations of a planetary surface can be used to create geologic maps. By the end of the lesson, students will understand how data gathered by spacecraft can not only be used to investigate the properties of an object, but also how it was formed, how it has evolved over time, and how it is connected to other objects nearby. Note: The MESSENGER mission to Mercury that is mentioned in this lesson ended operations April 30, 2015. For the latest information about MESSENGER and NASA's solar system missions see the links under Related & Supplemental Resources (right side of this page). (View Less)
This episode of the Space Place Live animated talk show features an interview with Andre Dress, the Deputy Project Manager for the Geostationary Operational Environmental Satellite (GOES) program. During the course of the interview, viewers are... (View More) introduced to the GOES program and its role in studying the sun, solar flares, weather and our atmosphere. The term geostationary is also explained. Cartoon characters present their own brief talk show from the Space Place Clubhouse. The show presents space program scientists and engineers as role models for kids and encourages them to pursue their dreams. Guests present a short science or technology concept, and also talk about their job, their hobbies, and how they became interested in a career in science or engineering. (View Less)
This resource complements a planetarium experience. However, the accompanying educator's guide and companion guides - with lessons on observing and investigating the Moon - are available to download for independent classroom use. The hands-on... (View More) activities, which take up where the show leaves off, motivate students to use their cooperative learning skills to design a self-sufficient lunar station. Working in teams, students develop critical thinking skills, problem-solving techniques, and an understanding of complex systems as they discuss solutions to the essential questions they are presented. (View Less)