You are here
Home ›Narrow Search
Now showing results 1-8 of 8
The pedosphere (soil) is the focus of this GLOBE eTraining program module. Protocols for investigating soil temperature, moisture, characterization, density and infiltration are explained. In addition, each module includes interactive digital field... (View More) and lab experiences, and online assessments. Instructions for uploading observations to the GLOBE database as well as for using the GLOBE visualization system are provided. GLOBE eTraining provides the opportunity for new and experienced GLOBE users to complete science protocol training online. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
The hydrosphere (water, ice, and vapor) is the focus of this GLOBE eTraining module. Protocols for investigating many characteristics of water such as temperature, transparency, electrical conductivity, pH, dissolved oxygen, salinity, nitrates, and... (View More) identifying mosquito larvae are explained. In addition, each module includes interactive digital field and lab experiences, and online assessments. Instructions for uploading observations to the GLOBE database as well as for using the GLOBE visualization system are provided. GLOBE eTraining provides the opportunity for new and experienced GLOBE users to complete science protocol training online. In addition, each module also includes interactive digital field and lab experiences, and online assessments. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
Emphasizing the synergies between science and engineering, these video clips highlight the research of professional ocean scientists and engineers in various disciplines. The clips are accompanied by additional relevant content including images,... (View More) data visualizations, graphs, animations, and other information. Content has been organized into more than a dozen thematic areas such as Solving Old Problems with New Technology and Small Scale Observations and Large Scale Ideas. All content has been aligned with science and engineering practices from the Next Generation Science Standards, including "asking questions and solving problems" and "planning and carrying out investigations," providing applicable resources for teachers who want to provide role models of effective practice for their students. (View Less)
In this activity, students will use a simulator of an orbiting X-ray observatory to observe a supernova remnant, the expanding gas from an exploded star. They will take X-ray spectral data, analyze them, and answer questions based on that data. This... (View More) resource consists of a manual and software for the Introductory Astronomy Lab Exercise, from CLEA (Contemporary Laboratory Experiments in Astronomy). The manual includes introductory activities for students, background information, an instructor's guide, a student handout, an answer key, a software user's guide, and a glossary. The student section of the activity starts on page 13. See Related & Supplemental Resources for a link to download the software. Note: the software is only available for Windows. (View Less)
In this data analysis activity, students investigate the relationship between between surface temperature, tropospheric ozone, and air quality. Step-by-step instructions for use of the MY NASA DATA Live Access Server (LAS) guide students through... (View More) selecting a data set, importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
In this data analysis activity, students investigate the relationship between volcanic activity and changes in concentration of atmospheric aerosols. Step-by-step instructions for use of the MY NASA DATA Live Access Server (LAS) guide students... (View More) through selecting a data set, importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
This investigation compares changes in ozone above the Arctic and the Antarctic. Students use text, tables, diagrams, images and photos to investigate the human-caused effects, the populations most at risk, and the different international... (View More) perspectives on solutions. To emphasize the effectual differences between the Arctic and Antarctic, groups of students argue positions at a "mock" meeting of a Montreal Protocol committee. The URL opens to the investigation directory, with links to teacher and student materials, lesson extensions, resources, teaching tips, and assessment strategies. This is Investigation 2 of three found in the Grades 9-12 Module 3 of Mission Geography. The Mission Geography curriculum integrates data and images from NASA missions with the National Geography Standards. Each of the three investigations in Module 3, while related, can be done independently. (View Less)
This is a lesson about the connection between meteorites and asteroids, focusing on remote-sensing techniques using light. Learners will make and record observations and measurements; analyze data and draw analogies; compare samples; measure and... (View More) record the brightness of spectral light; discover the composition of white light; participate in introductory quantitative spectroscopy experiments; set up, conduct and analyze a reflected light experiment; and recognize/discover that different materials reflect different proportions of incident light. Activities, vocabulary words, and experimental extensions are included. This is lesson 5 of 19 in Exploring Meteorite Mysteries. (View Less)
Materials Cost: $1 - $5 per group of students