You are here
Home ›Narrow Search
Now showing results 1-10 of 37
Students analyze and interpret the accompanying large-format images of Mars taken by NASA’s Mars Thermal Emission Imaging System (THEMIS) camera. The analysis involves identifying geologic features, calibrating the size of those features, and... (View More) determining surface history. The lesson culminates in students conducting in-depth research on questions generated during their analyses. The lesson is part of the Mars Education Program series; it models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. (View Less)
In this activity, students face an engineering challenge based on real-world applications. They are tasked with developing a tool they can use to measure the amount of rain that falls each day. Students will find out why freshwater is important,... (View More) learn about the water cycle, and the need to have a standard form of calibration for measurement tools. They will learn that keeping track of precipitation is important, and learn a little bit about how NASA's GPM satellite measures precipitation from space. This lesson uses the 5-E instructional model. (View Less)
Students will design, build and then test a rain gauge to measure precipitation. By sharing their results, they will recognize the need for standardization and precision in scientific tools. All background information, student worksheets and... (View More) images/photographs/data are included in these downloadable sections: Teacher’s Guide, Student Capture Sheet and PowerPoint Presentation. This activity uses the 5E instructional model and is part of the Survivor Earth series of one-hour lessons. (View Less)
Materials Cost: 1 cent - $1 per group of students
In this engineering challenge, student teams are introduced to the engineering design process, and then construct and test an earthquake-resistant structure. The lesson plan includes teacher support, student worksheets, multimedia assets, and links... (View More) for students to conduct Web-based investigations. Authentic assessments, a multiple choice test, and rubrics are included. This is an optional extension activity associated with the resource, Flight Mission Challenge: Improving Earthquake Monitoring, a 3 part, multiple-day Earth science and engineering investigation. (View Less)
Materials Cost: 1 cent - $1 per group of students
By matching maps of snow and ice amounts with maps of net radiation flux for the same time frame, students will use the Live Access Server to explore how the net radiation flux has affected the snow and ice amounts in the Northern Hemisphere, as... (View More) well as how the presence of snow can affect the net radiation flux due to surface reflection. The lesson includes detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. This lesson is from the MY NASA DATA project, which has created microsets from large scientific data sets, and wrapped them with tools, lesson plans, and supporting documentation so that a teacher, or anyone in the interested public, can use authentic NASA Earth system science data. (View Less)
This activity is designed to introduce students to planetary geologic features and processes. First, students will use NASA satellite images to identify geologic surface features on the "Blue Marble" (Earth), and will explore the connection between... (View More) those features and the geologic processes that created them. Using that information, students will then compare and discuss similar features on images from other planets. Included are the following materials: teacher's guide (with reference and resource information), student's guide (with activity sheets), and multiple cards of planetary images. Note that the range of targeted grade levels is quite broad; however, explicit adaptations for younger students are highlighted throughout the teacher's guide. (View Less)
Materials Cost: $1 - $5 per group of students
In this lesson, students collect sea surface temperature (SST) data from the MY NASA DATA Live Access Server (LAS), create time-series line plots, and use the plots to study a major coral bleaching event. Corals feed on algae that thrive in the... (View More) sunlit water surrounding a reef. However, when water temperatures get too warm, the algae food source dies and corals turn a whitish color. Through scientific observation, it has been determined that coral bleaching may occur when SST exceeds 30C or 86F for a week or longer. During late 2005, a major coral bleaching event, selected for study in this lesson, occurred as a result of these conditions in the Caribbean Sea. The lesson provides detailed procedures, related links and sample graphs, follow-up questions and extensions, and teacher notes. This lesson is from the MY NASA DATA project, which has created microsets from large scientific data sets, and wrapped them with tools, lesson plans, and supporting documentation so that a teacher, or anyone in the interested public, can use authentic NASA Earth system science data. (View Less)
In this data activity, students create maps of the snow cover of each continent, and determine the average global snow cover. Step-by-step instructions for use of the MY NASA DATA Live Access Server (LAS) guide students through selecting a data set,... (View More) importing the data into a spreadsheet, creating graphs, and analyzing data plots. The lesson provides detailed procedures, related links and sample graphs, follow-up questions, extensions, and teacher notes. Designed for student use, MY NASA DATA LAS samples micro datasets from large scientific data archives, and provides structured investigations engaging students in exploration of real data to answer real world questions. (View Less)
This activity has two purposes: challenge the learner to develop a procedure for investigating a research question and to learn more about factors affecting the dynamics of air in motion. It demonstrates that warm air and cold air differ in weight... (View More) and this difference affects air's vertical movement in the atmospheric column. Resources provided to students for this challenge include a homemade balance beam made of wood, two paper bags, a desk lamp, paper clips, tape and a thermometer. The resource includes background information, teaching tips and questions to guide student discussion. This is the chapter 8 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations. (View Less)
This is a lesson about the formation of glaciers, ice layering and stratigraphy, and the cryosphere and cryobotics. Learners will collect evidence of layering, explore the science story that layering tells, study snow and ice for insights into... (View More) climate change, and learn about the tools used to explore ice layers on Earth and in the solar system. Connections between rings of a tree and rings in an ice core will be made. Activities include small group miming, speaking, drawing, and/or writing. This is lesson 7 of 12 in the unit, Exploring Ice in the Solar System. (View Less)