You are here
Home ›Narrow Search
Now showing results 1-7 of 7
Become a crime scene investigator! Learners model Dawn Mission scientists, engineers, and technologists and how they use instrumentation to detect distant worlds. After a briefing to build context, students explore interactions between different... (View More) frequencies/wavelengths of the electromagnetic spectrum and matter as they investigate the different ways scientists gather and understand remote sensing data, using Dawn instruments as examples. This module is organized around a learning cycle, engaging students through several experiences to activate students' prior knowledge and assess conceptual understanding, informing next steps. (View Less)
This chapter describes how to set a scale and measure distances and areas on satellite images. Using ImageJ, a freely available image analysis program that runs on most operating systems, users set the spatial calibration of an image, then select... (View More) and measure distances and areas on it. The measurement results are reported in real-world units. The technique is most useful and accurate for nadir view (straight down) images. In this chapter, users examine satellite images of the Aral Sea, which has shrunk dramatically since 1960 because the rivers that flow into it have been tapped for irrigation. Users access satellite images of the region, then set a scale and measure the width of the sea each year. On another set of images, they highlight areas that represent water and measure them to see how these areas of the sea changed. This chapter is part of the Earth Exploration Toolbook, which provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)
This chapter describes the technique of preparing GIS-ready data and shows how to map that data and conduct basic analyses using a geographic information system (GIS). First, the user will download and format near real-time and historical earthquake... (View More) data from the USGS. Using latitude and longitude fields, they will then plot these data in a GIS. Next, they will analyze patterns by querying records and overlaying datasets. Finally, they will examine earthquake distributions, monitor current earthquake activity, and try to predict where the next big earthquake will occur on Earth. Includes teaching notes, step-by-step instructions, case study, tools and data, and going further. This chapter is part of the Earth Exploration Toolbook, which provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)
This chapter walks users through a technique for documenting change in before-and-after sets of satellite images. The technique can be used for any set of time-series images that are spatially registered to show the exact same area at the same... (View More) scale. In the chapter, users examine three Landsat images of the Pearl River delta in southeastern China. In these images, users observe changes in land use, then identify and outline areas of new land that were created by dredging sediments from the river bottom. The final product is an annotated image that highlights new land and indicates when it was created. The chapter is part of the Earth Exploration Toolbook, which provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)
In this activity, users download and graph modeled climate data to explore variability in climate change. Most people know that climate changes are predicted over the next hundred years, but they may not be aware that these changes are likely to... (View More) vary from region to region. Using data from the University of New Hampshire's EOS-WEBSTER, a digital library of Earth Science data, users will obtain annual predictions for minimum temperature, maximum temperature, precipitation, and solar radiation for each of these 5 states: New York, Georgia, Colorado, Minnesota, and California. Data will span the years 2000 through 2100. Users will import the data into Excel and analyze it to see what, if any, regional variability exists. Finally, they will download data for their own state, compare these results with the results from the other 5 states and use their results to answer questions related to climate change. This chapter is part of the Earth Exploration Toolbook (EET). Each EET chapter provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)
This lesson incorporates sea surface data collected by NASA satellites. Data for three surface characteristics- height, temperature and speed- are used for several activities. Students examine the differences in speed of currents relative to... (View More) distance from the Equator. Sea surface data anomalies are charted and further analyzed. In addition, surface current data is presented to examine patterns related to El Niño. Note that this is lesson three of five on the Ocean Motion website. Each lesson investigates ocean surface circulation using satellite and model data and can be done independently. See Related URL's for links to the Ocean Motion Website that provide science background information, data resources, teacher material, student guides and a lesson matrix. (View Less)
This lesson uses NASA satellite data to contrast amounts of cloud coverage over different climate regions in Africa. It introduces the circulation pattern of Hadley Cells and the band of convergence and convection called the Intertropical... (View More) Convergence Zone (ITCZ). The lesson also discusses how frequent cloud cover and precipitation occur along the ITCZ and how climate affects the people living within its regions, particularly Aswan, Egypt and Kampala, Uganda. The lesson provides detailed procedures, related links and sample graphs, follow-up questions and extensions, and teacher notes. This lesson is from the MY NASA DATA project, which has created microsets from large scientific data sets, and wrapped them with tools, lesson plans, and supporting documentation so that a teacher, or anyone in the interested public, can use authentic NASA Earth system science data. (View Less)