## You are here

Home ›Now showing results **1-10** of **10**

This is an activity associated with activities during Solar Week, a twice-yearly event in March and October during which classrooms are able to interact with scientists studying the Sun. Outside of Solar Week, information, activities, and resources... (View More) are archived and available online at any time. Learners will use SOHO spacecraft images of a coronal mass ejection and tracing paper to measure and then calculate the speed of the coronal mass ejection. This activity is scheduled to occur during Wednesday of Solar Week. (View Less)

This collection of 103 individual sets of math problems derives from images and data generated by NASA remote sensing technology. Whether used as a challenge activity, enrichment activity and/or a formative assessment, the problems allow students to... (View More) engage in authentic applications of math. Each set consists of one page of math problems (one to six problems per page) and an accompanying answer key. Based on complexity, the problem sets are designated for two grade level groups: 6-8 and 9-12. Also included is an introduction to remote sensing, a matrix aligning the problem sets to specific math topics, and four problems for beginners (grades 3-5). (View Less)

This lesson applies the science and math of the rotation of a sphere to water and wind movements on Earth. Students are introduced to convection, the Trade Winds and the Coriolis Force. Using an online visualizer, students generate trajectories and... (View More) then analyze course patterns and latitudinal changes in strength. Note that this is lesson two of five on the Ocean Motion website. Each lesson investigates ocean surface circulation using satellite and model data and can be done independently. See Related URL's for links to the Ocean Motion Website that provide science background information, data resources, teacher material, student guides and a lesson matrix. (View Less)

This is a lesson plan for an activity that explores time zone math. Learners will translate their local time to times in other zones around the world and work with the concept of Universal Time, specifically in reference to the reporting,... (View More) description and analysis of solar flares and coronal mass ejections. This is activity 10 from Exploring Magnetism Guide 3: Magnetic Mysteries of the Aurora educator guide. (View Less)

This is an activity about the mathematics of oscillation. Using data obtained in ninth and tenth activities in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide, learners will plot the formula... (View More) X(t)=X(0)cos(ft) or X(t)=X(0)sin(ft), depending on the data obtained during the oscillation experiments. Then, the mathematical model for oscillation is further refined by including damping. This is the eleventh activity in the guide and requires prior use and construction of a soda bottle magnetometer. (View Less)

Logarithms are very handy when dealing with numbers at different scales but they are also useful helping us average measurements of physical phenomena that have nonlinear behavior. In this example, students learn about cloud albedo and calculating... (View More) cloud optical depth. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This is an activity about satellite size. Learners will calculate the volume of the IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) satellite, the first satellite mission to image the Earth's magnetosphere. They will then determine the... (View More) effect of doubling and tripling the satellite dimensions on the satellite's mass and cost. This is the first activity in the Solar Storms and You: Exploring Satellite Design educator guide. (View Less)

Scientists use estimates as a check on more precise measurements; estimation is an easy way to quantify early hypotheses that can be tested or checked later in formal analysis. This article describes a number of examples of the use of estimating the... (View More) answers. The activity is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

In this problem set, students are led through a series of calculations to determine the best launch site for a TV satellite. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and... (View More) engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

In this exercise, students learn about the historical development of the Julian and the Gregorian Calendars and design a reasonable calendar for an imaginary planet, considering the cycle period and making design tradeoffs, This resource is from... (View More) PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)