You are here
Home ›Narrow Search
Now showing results 41-50 of 54
This activity is a kinesthetic exercise for students to experience rotation curves for themselves. The students are divided into two groups; one group will participate in the activity, while the other observes. The groups should switch for different... (View More) parts of the activity. This is Activity 6c in the "Hidden Lives of Galaxies" information and activity booklet that was designed for use with "The Hidden Lives of Galaxies" poster. The booklet includes student worksheets and background information for the teacher. (View Less)
In this activity, students determine the direction to a gamma ray burst using the times it is detected by three different spacecraft located somewhere in the solar system. We assume that all the spacecraft are in the plane of the Earth's orbit... (View More) around the Sun; that is, there is no third dimension and that we are only concerned with two dimensions, x and y. We also assume the burst is billions of light years away, so the incoming gamma rays are traveling along parallel lines. This activity is part of a unit that is designed to use gamma-ray bursts - unimaginably huge explosions that signal the births of black holes - as an engagement tool to teach selected topics in physical science and mathematics. The guide is based on the 5E instructional sequence and features background information, assessments, student worksheets, extension and transfer activities. (View Less)
In this activity, students look at the distribution of aluminum foil balls arranged in a circle on the floor, and compare them to the distribution of gamma-ray bursts on the sky. This activity is part of a unit designed to use gamma-ray bursts -... (View More) unimaginably huge explosions that signal the births of black holes - as an engagement tool to teach selected topics in physical science and mathematics. The guide is based on the 5E instructional sequence and features background information, assessments, student worksheets, extension and transfer activities. (View Less)
In this hands-on activity, students analyze the data on Mystery Object Cards, observe that astronomical objects have many observable properties, and discover that these properties allow scientists to categorize astronomical objects into different... (View More) groupings. Students also discover that, because objects can be grouped in different ways, discrete categorization is not always possible. This is why scientists need time to fully study and understand celestial objects and phenomenon. This activity is part of a unit designed to use gamma-ray bursts - unimaginably huge explosions that signal the births of black holes - as an engagement tool to teach selected topics in physical science and mathematics. The guide is based on the 5E instructional sequence and features background information, assessments, student worksheets, extension and transfer activities. (View Less)
In this activity students convert antilogs to logs, and logs to antilogs using scientific notation as an intermediate step. They will thereby develop a look-up table for solving math problems by using logarithms. This is activity D2 in the "Far Out... (View More) Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)
In this activity students construct multiplying slide rules scaled in Base-10 exponents and use them to calculate products and quotients. They will come to appreciate that super numbers (exponents, orders of magnitude and logarithms) play by... (View More) different rules of arithmetic than ordinary numbers (numbers, powers of ten and antilogs). This is activity A2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)
In this activity students construct Log Rulers, finely calibrated in base-10 exponents and numbers (logs and antilogs). They practice reading these scales as accurately as possible, listing all certain figures plus one uncertain figure. This is... (View More) activity D1 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)
In this activity students construct Log Tapes calibrated in base-ten exponents, then use them to derive relationships between base-ten logs (exponents) and antilogs (ordinary numbers). This is activity B1 in the "Far Out Math" educator's guide.... (View More) Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)
In this activity students develop a simplified log table using information from their Log Tapes. Then they use it to solve arithmetic problems by looking up and combining logs, and finding the antilog. Because these problems are extremely simple,... (View More) students appreciate the logic of logarithms without getting bogged down in the arithmetic detail and error. This is activity B3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)
This activity focuses on the question, What do active galaxies look like when viewed from different distances? Students work in small groups to learn about the small angle formula, construct a template, and use it to correctly measure the angular... (View More) size of a person. Students then use the Active Galaxies Poster to measure the angular size of a galaxy. Materials are commonly available or inexpensive items, e.g., scissors, cardboard, construction paper, calculator, protractor, meter stick or measuring tape). Includes background information, glossary, essential questions, extension activities, transfer activities, adaptations for visually-impaired students, and an answer key. This is activity 2 of 3 in the Active Galaxies Educators Guide. (View Less)