You are here
Home ›Narrow Search
Now showing results 1-10 of 10
Students analyze and interpret the accompanying large-format images of Mars taken by NASA’s Mars Thermal Emission Imaging System (THEMIS) camera. The analysis involves identifying geologic features, calibrating the size of those features, and... (View More) determining surface history. The lesson culminates in students conducting in-depth research on questions generated during their analyses. The lesson is part of the Mars Education Program series; it models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary. Next Generation Science Standards are listed. (View Less)
This is an activity about the atmospheric conditions (greenhouse strength, atmospheric thickness) Mars needs to maintain surface water. Learners will use a computer interactive to learn about Mars past and present before exploring the pressure and... (View More) greenhouse strength needed for Mars to have a watery surface as it had in the past. This lesson is part of Project Spectra, a science and engineering education program focusing on how light is used to explore the Solar System. (View Less)
Learners will investigate how much you can learn about something just by looking at it. In Activity 1, students study aerial photographs to identify geologic features, determine how they differ from one another, and examine the processes involved in... (View More) their formation. In Activity 2, students investigate how remote observations of a planetary surface can be used to create geologic maps. By the end of the lesson, students will understand how data gathered by spacecraft can not only be used to investigate the properties of an object, but also how it was formed, how it has evolved over time, and how it is connected to other objects nearby. Note: The MESSENGER mission to Mercury that is mentioned in this lesson ended operations April 30, 2015. For the latest information about MESSENGER and NASA's solar system missions see the links under Related & Supplemental Resources (right side of this page). (View Less)
This resource complements a planetarium experience. However, the accompanying educator's guide and companion guides - with lessons on observing and investigating the Moon - are available to download for independent classroom use. The hands-on... (View More) activities, which take up where the show leaves off, motivate students to use their cooperative learning skills to design a self-sufficient lunar station. Working in teams, students develop critical thinking skills, problem-solving techniques, and an understanding of complex systems as they discuss solutions to the essential questions they are presented. (View Less)
This is a lesson about the formation of glaciers, ice layering and stratigraphy, and the cryosphere and cryobotics. Learners will collect evidence of layering, explore the science story that layering tells, study snow and ice for insights into... (View More) climate change, and learn about the tools used to explore ice layers on Earth and in the solar system. Connections between rings of a tree and rings in an ice core will be made. Activities include small group miming, speaking, drawing, and/or writing. This is lesson 7 of 12 in the unit, Exploring Ice in the Solar System. (View Less)
This is a lesson about how and why ice flows, especially in a large mass such as a glacier. Learners will experience the qualities of viscoelastic materials and view videos of glacial ice flows. They will observe ice flows and materials other than... (View More) ice flowing differently under stress, and will investigate landscape changes as a result of large scale glacial movement. Activities include small group miming, speaking, drawing, and/or writing. This is lesson 5 of 12 in the unit, Exploring Ice in the Solar System. (View Less)
This is a lesson about detecting ice on the permanently shadowed craters of Mercury and the Moon. Learners will consider what might be in that ice and will examine why the polar regions of Earth, Mercury and the Moon are colder than elsewhere on the... (View More) planets. Activities include small group miming, speaking, drawing, and/or writing. This is the lesson 12 of 12 in the unit, Exploring Ice in the Solar System. (View Less)
Materials Cost: $5 - $10 per group of students
Learners will investigate how water and ice exist in the atmosphere as they study water vapor condensing, find that clouds are made of tiny droplets of water, and notice that snow forms in clouds. Activities include demonstrations by the teacher,... (View More) small group miming, speaking, drawing, and/or writing. In addition to commonly found classroom materials, dry ice, an aquarium or terrarium container, magnifying glass are needed. This is lesson 6 of 12 in the unit, Exploring Ice in the Solar System. (View Less)
In this activity, learners will determine the factors affecting the appearance of impact craters and ejecta on the Moon. Extensions are listed. This activity is in Unit 2 of the Exploring the Moon teachers guide, which is designed for use... (View More) especially, but not exclusively, with the Lunar Sample Disk program. (View Less)
Materials Cost: $1 - $5 per group of students
In this activity, learners will investigate and try to explain various lunar anomalies. They will present hypotheses (both written and oral) and then debate the merits of each hypothesis, with no right or wrong answers. This activity is in Unit 2 of... (View More) the teachers guide, Exploring the Moon, which is designed for use especially, but not exclusively, with the Lunar Sample Disk program. (View Less)