You are here
Home ›Now showing results 1-10 of 10
Students use a dipole magnet and compass to model and map Earth's magnetic field. They then induce a magnetic field to represent a Ring Current in order to observe the response to a fluctuating electric current caused by a solar storm. The lesson... (View More) includes background information, procedures, worksheets, answer keys and graphics. Next Generation Science Standards (NGSS) are listed. (View Less)
This is a lithograph about NASA's Magnetospheric Multiscale Mission, or MMS. Learners will cut out and assemble a colorful 3D model of an MMS spacecraft. Web links, additional facts, and QR codes are included for audiences to access more information.
This is an activity about Earth's magnetic field. Learners will construct a soda bottle magnetometer, collect data, and analyze the results to detect magnetic storm events. Ideally, learners should collect data for at least a month. If several... (View More) months are available for data collection, this is ideal. This is the first activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link. (View Less)
This is a lesson about the solar wind, Earth's magnetosphere, and the Moon. Participants will work in groups of two or three to build a model of the Sun-Earth-Moon system. They will use the model to demonstrate that the Earth is protected from... (View More) particles streaming out of the Sun, called the solar wind, by a magnetic shield called the magnetosphere, and that the Moon is periodically protected from these particles as it moves in its orbit around the Earth. Participants will also learn that the NASA ARTEMIS mission is a pair of satellites orbiting the Moon that measure the intensity of solar particles streaming from the Sun. (View Less)
This is a collection of outreach resources about the Sun that are meant to be used in informal education settings. This toolkit was originally designed for NASA Night Sky Network member clubs and the Astronomical Society of the Pacific's Astronomy... (View More) from the Ground Up network of museum and science center educators. The toolkit includes background information about the Sun, magnetic fields of the Earth and Sun, and space weather, activity suggestions, and detailed activity scripts. The themes of this toolkit address both the constant nature of the Sun as a reliable source of energy and the dynamic nature of the Sun due to its changing magnetic fields. The activities and related materials in this collection include The Sun in a Different Light - Observing the Sun, Explore the Sun cards, Magnetic Connection, the Space Weather PowerPoint, Protection from Ultraviolet, and Where Does the Energy Come From cards. These activities can be done separately or as a group as part of an informal education event. Institutions that are not part of the Night Sky Network will need to acquire the various materials required for each activity. (View Less)
This is an activity about the movement, or "wandering," of our Earth's magnetic poles. The learner will explore this concept by measuring and calculating the distance the Earth's north magnetic pole has moved over the past 400 years and calculating... (View More) the rate at which the magnetic pole location has changed its position during that time. Finally, learners will use this information to extrapolate how the region for viewing aurorae may change over the next century at the present rate of polar wander. This is Activity 6 in the Exploring Magnetism on Earth teachers guide. (View Less)
This lesson is an introduction to the use of a magnetic compass. At a specific location, learners will locate an object using a compass, identify its bearing, and others will attempt to locate the object by only knowing the bearing reading and the... (View More) corresponding location where the bearing was obtained. Next, learners will develop a method for determining if a magnetic storm is occurring, and they will test this method using online information and a compass. This activity requires compasses and access to the Internet. This is Activity 5 in the Exploring Magnetism on Earth teachers guide. (View Less)
This is an activity about the magnetic deflection. Learners will observe and measure the deflection that an iron mass causes in a soda bottle magnetometer and plot the data. The data should show the inverse-square cube law of change in the magnetic... (View More) field. This is the twelfth activity in the guide and requires prior use and construction of a soda bottle magnetometer, as well as a six to ten pound container of iron nails (or an equivalent iron mass). (View Less)
This is an activity about the effect of solar storm events on Earth's magnetic field. Learners will construct a soda bottle magnetometer, take it home, collect data over the course of three days, and analyze the results from several of these data... (View More) collection sessions to detect magnetic storm events. This is the eighth activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)
This is an activity about Earth's magnetosphere. Learners will use a magnet, simulating Earth's protective magnetosphere, and observe what occurs when iron filings, simulating the solar wind, blow past and encounter the magnet's field. This is the... (View More) third activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)