## You are here

Home ›## Narrow Search

**Earth and space science**

**Earth structure**

Now showing results **11-20** of **23**

Students will learn about the Landsat spacecraft and its study of Earth from space through reading a NASA press release. By viewing a NASA eClips video segment, students will see how Landsat monitors conditions in the Chesapeake Bay. Then students... (View More) will use fractions to understand land use on Earth based upon Landsat data. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about satellites that gather data about Earth systems by reading a NASA press release and viewing a NASA eClips video segment. Then students will practice dividing multi-digit numbers using satellite data related to the Earth's... (View More) ozone layer. Common Core State Standards for Mathematics and English Language Arts are identified. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

This is a building-wide enrichment program consisting of a series of posters and accompanying questions designed to pique student interest in science concepts and their application to the world in which we live. Accompanying each poster is a series... (View More) of question sheets of increasing difficulty levels that students answer and submit at a designated location (collection box, office, etc.). Random prize drawings can be used to recognize/celebrate student participation. The purpose is to expose students to and create school-wide interest about science so students want to "STOP for Science" as displays are changed throughout the year. Although the focus is building-wide, content can be linked to classrooms through use of accompanying teacher resource guides. The website includes several resources for program facilitators, including posters, answer sheets, podcasts, implementation guide and webinars for facilitators. The program targets grades 3-6 for independent use, but can be used with grades K-2 with adult or upper grade level assistance. Each poster in the series stands alone and is not tied to concepts in other posters. Therefore, posters can be displayed in any sequence desired. (View Less)

This is a book containing over 200 problems spanning over 70 specific topic areas covered in a typical Algebra II course. Learners can encounter a selection of application problems featuring astronomy, earth science and space exploration, often with... (View More) more than one example in a specific category. Learners will use mathematics to explore science topics related to a wide variety of NASA science and space exploration endeavors. Each problem or problem set is introduced with a brief paragraph about the underlying science, written in a simplified, non-technical jargon where possible. Problems are often presented as a multi-step or multi-part activities. This book can be found on the Space Math@NASA website. (View Less)

This is a booklet containing 37 space science mathematical problems, several of which use authentic science data. The problems involve math skills such as unit conversions, geometry, trigonometry, algebra, graph analysis, vectors, scientific... (View More) notation, and many others. Learners will use mathematics to explore science topics related to Earth's magnetic field, space weather, the Sun, and other related concepts. This booklet can be found on the Space Math@NASA website. (View Less)

This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its... (View More) intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide. (View Less)

This is an activity about the movement, or "wandering," of our Earth's magnetic poles. The learner will explore this concept by measuring and calculating the distance the Earth's north magnetic pole has moved over the past 400 years and calculating... (View More) the rate at which the magnetic pole location has changed its position during that time. Finally, learners will use this information to extrapolate how the region for viewing aurorae may change over the next century at the present rate of polar wander. This is Activity 6 in the Exploring Magnetism on Earth teachers guide. (View Less)

This is an activity about the periodic reversals of Earth's magnetic field. Learners will graph the frequency of magnetic pole reversals over the past 800,000 years and investigate answers to questions using the graphed data. This is Activity 8 in... (View More) the Exploring Magnetism on Earth teachers guide. (View Less)

In this problem-based learning (PBL) scenario, students prepare a presentation for investors showing how their fishing company has a significant advantage because it locates upwelling zones and fishing areas using TRMM (Tropical Rainfall Measuring... (View More) Mission) and other satellite data. Prior to launching the PBL, students learn about wind: the topics of air pressure, coriolis effect, upwelling and the role of differential heating on the atmosphere are explored in classroom demonstrations. Materials required include a beaker, coffee grounds, drinking straw, balloon, flashlight, and turntable. The resource includes teacher background information, glossary, assessment rubric, and an appendix introducing problem-based learning. (View Less)

In this scenario-based, problem-based learning (PBL) activity, students investigate cloud formation, cloud classification, and the role of clouds in heating and cooling the Earth; how to interpret TRMM (Tropical Rainfall Measuring Mission) images... (View More) and data; and the role clouds play in the Earth’s radiant budget and climate. Students assume the role of weather interns in a state climatology office and assist a frustrated student in a homework assignment. Learning is supported by a cloud in a bottle and an ice-albedo demonstration, a three-day cloud monitoring outdoor activity, and student journal assignments. The hands-on activities require two 2-liter soda bottles, an infrared heat lamp, and two thermometers. The resource includes a teacher's guide, questions and answer key, assessment rubric, glossary, and an appendix with information supporting PBL in the classroom. (View Less)