You are here
Home ›Narrow Search
Now showing results 1-10 of 93
This afterschool curriculum includes six lessons plus supplementary materials (e.g., videos, PowerPoint presentations, and images) that explore how light from the electromagnetic spectrum is used as a tool for learning about the Sun. The curriculum... (View More) is designed to be flexible to meet the needs of afterschool programs and includes recommendations for partial implementation based on time constraints. It was specifically designed to engage girls in science. (View Less)
This is the first module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Activities are self-directed by students or student teams using online videos and data from the SDO satellite to explore, research and build knowledge about... (View More) features of the Sun. Students build vocabulary, apply or demonstrate learning through real world connections, and creating resources to use in their investigations. Each activity comes with both a teacher and student guide with sequential instructions and embedded links to the needed videos and internet resources. Activity 1A: Structure of the Earth's Star takes students through the features and function of the Sun's structures using online videos, completing a "Sun Primer" data sheet using information from the videos, and creating a 3D origami model of the Sun. Students use a KWL chart to track what they have learned. Activity 1B: Observing the Sun has students capture real solar images from SDO data to find and record sunspots and track their movement across the surface of the Sun. Activity 1C has students create a pin-hole camera to use in calculating the actual diameter of the Sun, and then calculate scales to create a Earth-Sun scale model. Students reflect on their learning and results at the end of the module. An internet connection and access to computers are needed to complete this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This is the second module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Each activity is self-directed by students or student teams and uses online videos, data from the SDO satellite and hands-on activities to explore, research... (View More) and build knowledge about how and why studying the Sun's electromagnetic energy and magnetic fields help scientists better understand the Sun's activity and space weather. Students build knowledge and vocabulary, apply or demonstrate learning through real world connections and create resources to use in investigations. Both a teacher and student guide is included with sequential instructions and embedded links to the needed videos, tutorials and internet resources. In Activity 2A: The Sun and the EM Spectrum students learn how SDO uses key parts of the Sun's electromagnetic spectrum (EMS) to research regions of the Sun, create an interactive foldable to describe the different wavebands of the EMS, then use real-time SDO image data and the Helioviewer online tool to explore the Sun's regional activity. Tutorials for using Helioviewer and making the EMS foldable are included. Activity 2B: Solar activity and Magnetism has students use information in online videos and slide presentations to demonstrate concepts of magnetism and the relationship between the Sun's variable magnetic fields and sunspots. Activity 3B: Solar Research in Action! Build a Spectroscope has students create a spectroscope to observe the different wavebands of visible light, demonstrate how the Sun emits varying EMS energies, and explain how this information helps scientists understand the composition and activity of both our nearest star, and other stars in the universe. A computer for student-teams and a connection to the Internet are needed to complete this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This is the third module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Each activity is self-directed by students or student teams and utilizes online videos, data from the SDO satellite and hands-on activities to explore,... (View More) research and build knowledge about how the Sun's varying activity impacts Earth and space weather. Each activity provides opportunities to build knowledge and vocabulary, apply or demonstrate learning through real world connections and create resources to use in investigations. Both a teacher and student guide are included with sequential instructions and embedded links to the needed videos, tutorials and internet resources. In Activity 3A: Sun-Earth Interactions, students gather information from online videos and create a 3D model to demonstrate the relationship to Earth's place in space and the affect of Earth's axial tilt on our seasons, then film a short video explaining the reasons for the seasons. Activity 3B: Space Weather, students use online videos to gather information on what space weather is, and its causes and effects, to create a concept map. They then use real-time SDO data to forecast space weather. Activity 3C: Solar Research in Action! Make a Magnetometer has students view information in online videos about to Earth's magnetosphere and the impacts of space weather, then create a magnetometer to detect and visualize changes in the Earth's magnetic fields to monitor solar storm impacts. A computer for student-teams and access to the internet are needed for this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This is the fourth and culminating module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Student teams use information and resources from the other three modules in the project suite to create a 3D interactive solar exhibit to... (View More) educate others about the Sun and how SDO informs scientists about the Sun's activity, structures and features, and Earth-Sun interactions. Students then self-evaluate their team's solar exhibit. Both a teacher and student guide are included, as well as tools for students to self-direct and track project process, and record reflections and information. A computer for student-teams and access to the internet are needed for this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
In this activity, students create a scale model depicting the vertical distance from Earth’s surface to various features and objects, including Earth’s atmospheric layers, the Van Allen Radiation Belts, and geocentric satellites. Students also... (View More) compare the vertical distances to these features and objects with distances from their classroom to other common points on the ground. Includes background science information; student reading, handouts and worksheet; teacher information; and suggested extensions and adaptations for students with vision impairment. (View Less)
This series of laboratory lessons and activities uses authentic solar imagery and data to introduce students to solar science. Students are asked to explore details in imagery, including how to deal with the issues of noise and resolution, and... (View More) understand scale. They are introduced to the concept of space weather and how that affects both observing instruments and the Earth. Students learn about spectra, how helium and coronium were discovered, and go on to explore real spectra from the Sun. Most activities are mathematically based, and targeted for grades 9-10. Imagery is included from NASA/ESA's SOHO mission, NASA's SDO mission, and Japan's Hinode satellite. (View Less)
This is an activity about electromagnetism and the Sun. First, learners will do a KWL activity using six vocabulary words. Next, they will build an electromagnet and investigate how it works. Finally, learners will relate the workings of their... (View More) electromagnet to a Solar Dynamics Observatory magnetogram image of the Sun. Per group of learners, this activity requires materials such as a length of insulated wire, alligator clips, a 2-D-battery holder, two D-batteries, and a nail. (View Less)
This is a lesson about research tools and skills. Learners will explore the features of Mars through a demonstration of Google Earth Mars, gather, and analyze data from multiple sources on the internet as well as print sources, develop and use... (View More) strategies for reading informational text to systematically find information, understand that Earth and Mars have similar geological features. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, two Vocabulary Cards, and a reading strategy supplement. This is lesson 3 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
In this kinesthetic activity, students will demonstrate how two spacecraft are able to document a space weather event across the Van Allen radiation belts better than one spacecraft can. Students will graph the data collected by one spacecraft and... (View More) by two spacecraft during a space weather event; compare and contrast the graphical data from one spacecraft and from two spacecraft collected during a space weather event; and explain that space weather events can change from time-to-time and place-to-place across the Van Allen radiation belts, which is why it is helpful to observe them from two spacecraft simultaneously. Includes background science information, student handouts and data collection sheets, teacher answer key, and suggested extensions and adaptations for students with vision or hearing impairments. (View Less)